Spaces:
Sleeping
Sleeping
File size: 8,964 Bytes
444a81b 690d85c 5a986b1 444a81b 5a986b1 02632f9 5a986b1 444a81b f9f657f 5a986b1 02632f9 5a986b1 02632f9 690d85c 02632f9 f9f657f 5a986b1 02632f9 5a986b1 444a81b 690d85c 444a81b 690d85c 444a81b 690d85c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import os
os.system("pip install streamlit pandas xlsxwriter openpyxl")
import streamlit as st
import pandas as pd
import xlsxwriter
from io import BytesIO
from collections import defaultdict
import hashlib
import sqlite3
import base64
# Initialize DB
def init_db():
conn = sqlite3.connect("file_cache.db")
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS file_cache (
file_hash TEXT PRIMARY KEY,
file_name TEXT,
analysis_type TEXT,
result BLOB
)
''')
conn.commit()
conn.close()
init_db()
# Hashing function
def get_file_hash(file):
return hashlib.sha256(file.read()).hexdigest()
# Check if file hash exists in DB
def check_cache(file_hash, analysis_type):
conn = sqlite3.connect("file_cache.db")
cursor = conn.cursor()
cursor.execute("SELECT result FROM file_cache WHERE file_hash = ? AND analysis_type = ?", (file_hash, analysis_type))
row = cursor.fetchone()
conn.close()
if row:
return BytesIO(base64.b64decode(row[0]))
return None
# Store result in DB
def cache_result(file_hash, file_name, analysis_type, result_bytes):
conn = sqlite3.connect("file_cache.db")
cursor = conn.cursor()
cursor.execute(
"INSERT OR REPLACE INTO file_cache (file_hash, file_name, analysis_type, result) VALUES (?, ?, ?, ?)",
(file_hash, file_name, analysis_type, base64.b64encode(result_bytes.read()).decode('utf-8'))
)
conn.commit()
conn.close()
# === Protein Analysis Logic ===
def is_homo_repeat(s):
return all(c == s[0] for c in s)
def find_homorepeats(protein):
n = len(protein)
freq = defaultdict(int)
i = 0
while i < n:
curr = protein[i]
repeat = ""
while i < n and curr == protein[i]:
repeat += protein[i]
i += 1
if len(repeat) > 1:
freq[repeat] += 1
return freq
def find_hetero_amino_acid_repeats(sequence):
repeat_counts = defaultdict(int)
for length in range(2, len(sequence) + 1):
for i in range(len(sequence) - length + 1):
substring = sequence[i:i+length]
repeat_counts[substring] += 1
return {k: v for k, v in repeat_counts.items() if v > 1}
def fragment_protein_sequence(sequence, max_length=1000):
return [sequence[i:i+max_length] for i in range(0, len(sequence), max_length)]
def check_boundary_repeats(fragments, final_repeats, overlap=50):
for i in range(len(fragments) - 1):
left_overlap = fragments[i][-overlap:]
right_overlap = fragments[i + 1][:overlap]
overlap_region = left_overlap + right_overlap
boundary_repeats = find_hetero_amino_acid_repeats(overlap_region)
for substring, count in boundary_repeats.items():
if any(aa in left_overlap for aa in substring) and any(aa in right_overlap for aa in substring):
final_repeats[substring] += count
return final_repeats
def find_new_boundary_repeats(fragments, final_repeats, overlap=50):
new_repeats = defaultdict(int)
for i in range(len(fragments) - 1):
left_overlap = fragments[i][-overlap:]
right_overlap = fragments[i + 1][:overlap]
overlap_region = left_overlap + right_overlap
boundary_repeats = find_hetero_amino_acid_repeats(overlap_region)
for substring, count in boundary_repeats.items():
if any(aa in left_overlap for aa in substring) and any(aa in right_overlap for aa in substring):
if substring not in final_repeats:
new_repeats[substring] += count
return new_repeats
def process_protein_sequence(sequence, analysis_type, overlap=50):
fragments = fragment_protein_sequence(sequence)
final_repeats = defaultdict(int)
if analysis_type == "Hetero":
for fragment in fragments:
fragment_repeats = find_hetero_amino_acid_repeats(fragment)
for k, v in fragment_repeats.items():
final_repeats[k] += v
final_repeats = check_boundary_repeats(fragments, final_repeats, overlap)
new_repeats = find_new_boundary_repeats(fragments, final_repeats, overlap)
for k, v in new_repeats.items():
final_repeats[k] += v
final_repeats = {k: v for k, v in final_repeats.items() if not is_homo_repeat(k)}
elif analysis_type == "Homo":
final_repeats = find_homorepeats(sequence)
elif analysis_type == "Both":
hetero_repeats = defaultdict(int)
for fragment in fragments:
fragment_repeats = find_hetero_amino_acid_repeats(fragment)
for k, v in fragment_repeats.items():
hetero_repeats[k] += v
hetero_repeats = check_boundary_repeats(fragments, hetero_repeats)
new_repeats = find_new_boundary_repeats(fragments, hetero_repeats)
for k, v in new_repeats.items():
hetero_repeats[k] += v
hetero_repeats = {k: v for k, v in hetero_repeats.items() if not is_homo_repeat(k)}
homo_repeats = find_homorepeats(sequence)
final_repeats = homo_repeats.copy()
for k, v in hetero_repeats.items():
final_repeats[k] += v
return final_repeats
def process_excel(excel_data, analysis_type):
repeats = set()
sequence_data = []
for sheet_name in excel_data.sheet_names:
df = excel_data.parse(sheet_name)
if len(df.columns) < 3:
st.error(f"Error: The sheet '{sheet_name}' must have at least three columns: ID, Protein Name, Sequence")
return None, None
for _, row in df.iterrows():
entry_id = str(row[0])
protein_name = str(row[1])
sequence = str(row[2]).replace('"', '').replace(' ', '')
freq = process_protein_sequence(sequence, analysis_type)
sequence_data.append((entry_id, protein_name, freq))
repeats.update(freq.keys())
return repeats, sequence_data
def create_excel(sequences_data, repeats, filenames):
output = BytesIO()
workbook = xlsxwriter.Workbook(output, {'in_memory': True})
for file_index, file_data in enumerate(sequences_data):
filename = filenames[file_index]
worksheet = workbook.add_worksheet(filename[:31])
worksheet.write(0, 0, "Entry ID")
worksheet.write(0, 1, "Protein Name")
col = 2
for repeat in sorted(repeats):
worksheet.write(0, col, repeat)
col += 1
row = 1
for entry_id, protein_name, freq in file_data:
worksheet.write(row, 0, entry_id)
worksheet.write(row, 1, protein_name)
col = 2
for repeat in sorted(repeats):
worksheet.write(row, col, freq.get(repeat, 0))
col += 1
row += 1
workbook.close()
output.seek(0)
return output
# === Streamlit UI ===
st.title("Protein Repeat Analysis with Caching")
analysis_type = st.radio("Select analysis type:", ["Homo", "Hetero", "Both"], index=2)
uploaded_files = st.file_uploader("Upload Excel files", accept_multiple_files=True, type=["xlsx"])
if uploaded_files:
all_repeats = set()
all_sequences_data = []
filenames = []
final_output = BytesIO()
for file in uploaded_files:
file.seek(0)
file_hash = get_file_hash(file)
file.seek(0)
cached = check_cache(file_hash, analysis_type)
if cached:
st.success(f"Using cached result for {file.name}")
cached_content = cached.read()
final_output.write(cached_content)
final_output.seek(0)
else:
st.info(f"Processing {file.name}...")
excel_data = pd.ExcelFile(file)
repeats, sequence_data = process_excel(excel_data, analysis_type)
if repeats is not None:
all_repeats.update(repeats)
all_sequences_data.append(sequence_data)
filenames.append(file.name)
excel_file = create_excel(all_sequences_data, all_repeats, filenames)
cache_result(file_hash, file.name, analysis_type, excel_file)
final_output = excel_file
st.download_button(
label="Download Excel file",
data=final_output,
file_name="protein_repeat_results.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
if st.checkbox("Show Results Table"):
rows = []
for file_index, file_data in enumerate(all_sequences_data):
filename = filenames[file_index]
for entry_id, protein_name, freq in file_data:
row = {"Filename": filename, "Entry ID": entry_id, "Protein Name": protein_name}
row.update({repeat: freq.get(repeat, 0) for repeat in sorted(all_repeats)})
rows.append(row)
result_df = pd.DataFrame(rows)
st.dataframe(result_df)
|