copywriter2a / app.py
JeCabrera's picture
Update app.py
8cb552a verified
raw
history blame
5.72 kB
TITLE = """<h1 align="center">Gemini Playground ✨</h1>"""
SUBTITLE = """<h2 align="center">Play with Gemini Pro and Gemini Pro Vision</h2>"""
import os
import uuid
from typing import List, Tuple, Optional, Union
import google.generativeai as genai
import gradio as gr
from PIL import Image
from dotenv import load_dotenv
# Cargar las variables de entorno desde el archivo .env
load_dotenv()
print("google-generativeai:", genai.__version__)
# Obtener la clave de la API de las variables de entorno
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
# Verificar que la clave de la API esté configurada
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY is not set in environment variables.")
IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]
# Configurar la API de Gemini
genai.configure(api_key=GOOGLE_API_KEY)
# Función para transformar el historial del chat
def transform_history(history: CHAT_HISTORY):
"""
Transforma el historial del chat en el formato necesario para el modelo.
"""
transformed = []
for user_input, bot_response in history:
if user_input:
transformed.append({"role": "user", "content": user_input})
if bot_response:
transformed.append({"role": "assistant", "content": bot_response})
return transformed
# Función de generación de respuesta
def response(
message: str, history: CHAT_HISTORY, model_choice: str, system_instruction: str
) -> str:
"""
Genera una respuesta basada en el historial del chat y el mensaje del usuario.
"""
generation_config = genai.types.GenerationConfig(
temperature=0.7,
max_output_tokens=8192,
top_k=10,
top_p=0.9
)
model = genai.GenerativeModel(
model_name=model_choice,
generation_config=generation_config,
system_instruction=system_instruction,
)
transformed_history = transform_history(history)
model_response = model.chat(messages=transformed_history + [{"role": "user", "content": message}])
return model_response.text
# Preprocesamiento de imágenes
def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
if image:
image_height = int(image.height * IMAGE_WIDTH / image.width)
return image.resize((IMAGE_WIDTH, image_height))
# Guardar imágenes en caché
def cache_pil_image(image: Image.Image) -> str:
image_filename = f"{uuid.uuid4()}.jpeg"
os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
image.save(image_path, "JPEG")
return image_path
# Subir imágenes
def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
for file in files:
image = Image.open(file).convert("RGB")
image_preview = preprocess_image(image)
if image_preview:
gr.Image(image_preview).render()
image_path = cache_pil_image(image)
chatbot.append(((image_path,), None))
return chatbot
# Manejo del usuario
def user(text_prompt: str, chatbot: CHAT_HISTORY):
if text_prompt:
chatbot.append((text_prompt, None))
return "", chatbot
# Manejo del bot con historial
def bot(
files: Optional[List[str]],
model_choice: str,
system_instruction: str,
chatbot: CHAT_HISTORY,
):
text_prompt = chatbot[-1][0] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else ""
bot_reply = response(text_prompt, chatbot, model_choice, system_instruction)
chatbot[-1] = (text_prompt, bot_reply)
return chatbot
# Componentes de la interfaz
system_instruction_component = gr.Textbox(
placeholder="Enter system instruction...", show_label=True, scale=8
)
chatbot_component = gr.Chatbot(
label="Gemini",
bubble_full_width=False,
scale=2,
height=300
)
text_prompt_component = gr.Textbox(
placeholder="Message...", show_label=False, autofocus=True, scale=8
)
upload_button_component = gr.UploadButton(
label="Upload Images", file_count="multiple", file_types=["image"], scale=1
)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
model_choice_component = gr.Dropdown(
choices=["gemini-1.5-flash", "gemini-2.0-flash-exp", "gemini-1.5-pro"],
value="gemini-1.5-flash",
label="Select Model",
scale=2
)
user_inputs = [
text_prompt_component,
chatbot_component,
]
bot_inputs = [
upload_button_component,
model_choice_component,
system_instruction_component,
chatbot_component,
]
# Interfaz de usuario
with gr.Blocks() as demo:
gr.HTML(TITLE)
gr.HTML(SUBTITLE)
with gr.Column():
model_choice_component.render()
chatbot_component.render()
with gr.Row():
text_prompt_component.render()
upload_button_component.render()
run_button_component.render()
system_instruction_component.render()
run_button_component.click(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
text_prompt_component.submit(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
upload_button_component.upload(
fn=upload,
inputs=[upload_button_component, chatbot_component],
outputs=[chatbot_component],
queue=False
)
# Lanzar la aplicación
demo.queue(max_size=99).launch(debug=False, show_error=True)