File size: 6,214 Bytes
9991ce4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Write the Streamlit app script
# Write the Streamlit app script
import streamlit as st
import pdfplumber
import torch
from transformers import RobertaTokenizer, RobertaModel
import nltk
import openai
from torch import nn
import torch.nn.functional as F
from nltk.tokenize import sent_tokenize

# Download the 'punkt' package
nltk.download('punkt')

openai.api_key = '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'

# Define your model architecture
class Bert_model(nn.Module):
    def __init__(self, hidden_size, dropout_rate):
        super(Bert_model, self).__init__()
        self.hidden_size = hidden_size
        self.bert = RobertaModel.from_pretrained('deepset/roberta-base-squad2')
        self.cls_prj = nn.Linear(hidden_size, hidden_size, bias=True)
        self.cls_dropout = nn.Dropout(dropout_rate)
        self.cls_final = nn.Linear(hidden_size, 2, bias=True)

    def forward(self, input_ids, attention_mask):
        bert_outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
        bert_sequence_output = bert_outputs.last_hidden_state
        bert_pooled_output = bert_sequence_output[:, 0, :]
        pooled_output = self.cls_prj(bert_pooled_output)
        pooled_output = self.cls_dropout(pooled_output)
        logits = self.cls_final(pooled_output)
        return logits

# Load the model
model_path = "/content/model.pt"  # Replace with your actual model path
state_dict = torch.load(model_path)
device = "cuda"  # or "cpu" if GPU is not available

# Instantiate the model architecture
model = Bert_model(hidden_size=768, dropout_rate=0.1)  # Adjust the hidden size to match the saved model
model = nn.DataParallel(model)
model.load_state_dict(state_dict)
model = model.to(device)
model.eval()

# Load the tokenizer
tokenizer = RobertaTokenizer.from_pretrained('deepset/roberta-base-squad2')

# Function to preprocess PDF text
def preprocess_pdf(pdf_path, tokenizer):
    with pdfplumber.open(pdf_path) as pdf:
        text = " ".join([page.extract_text() for page in pdf.pages[2:]])
        tokenized_text = tokenizer.encode_plus(
            text,
            add_special_tokens=True,
            max_length=512,
            padding='max_length',
            return_attention_mask=True
        )
        input_ids = torch.tensor([tokenized_text['input_ids']])
        attention_mask = torch.tensor([tokenized_text['attention_mask']])
        return input_ids, attention_mask, text

def translate_text(text, target_language):
    response = openai.ChatCompletion.create(
        model="gpt-4",
        messages=[
            {"role": "system", "content": "You are a helpful assistant that translates English text to other languages."},
            {"role": "user", "content": f'Translate the following English text to {target_language}: "{text}"'},
        ],
    )
    return response.choices[0].message['content']

def explain_term(term):
    response = openai.ChatCompletion.create(
        model="gpt-4",
        messages=[
            {
                "role": "system",
                "content": "You are a helpful assistant that provides definitions."
            },
            {
                "role": "user",
                "content": f"Explain the term: {term}"
            },
        ],
    )
    return response['choices'][0]['message']['content']

# Streamlit code to upload file
st.title('FinQA (Financial Question-Answering)')
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")

# Select language
language = st.selectbox('Select your language', ['English', 'French','Chinese','Korean','Spanish','German','Japanese'])

if uploaded_file is not None:
    with open("temp.pdf", "wb") as f:
        f.write(uploaded_file.getbuffer())
    input_ids, attention_mask, text = preprocess_pdf("temp.pdf", tokenizer)
    st.write('File successfully uploaded and processed')

    # Ask a question
    question = st.text_input("Enter your question:")

    if question:
        sentences = sent_tokenize(text)
        predictions = []

        for sentence in sentences:
            inputs = tokenizer.encode_plus(question, sentence, return_tensors='pt', padding='max_length', truncation=True, max_length=512)
            input_ids = inputs['input_ids'].to(device)
            attention_mask = inputs['attention_mask'].to(device)

            with torch.no_grad():
                outputs = model(input_ids, attention_mask)
                probabilities = F.softmax(outputs, dim=1)
                max_value, max_index = torch.max(probabilities, dim=1)
                prediction = max_index.item()
                predictions.append((sentence, prediction, probabilities[0].tolist()))

        predictions.sort(key=lambda pair: pair[1], reverse=True)
        top_5_sentences = predictions[:13]

        #st.write("Top 5 Relevant Sentences:")
        #for sentence, prediction, probabilities in top_5_sentences:
            #st.write(f"Sentence: {sentence}, Prediction: {prediction}, Probability: {probabilities[prediction]}")

        # Prepare the chat history with the top 3 sentences
        chat_history = "\n".join([sentence[0] for sentence in top_5_sentences])

        # Ask the question using OpenAI API
        openai.api_key = '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'  # Replace with your actual OpenAI API key

        response = openai.ChatCompletion.create(
            model="gpt-4",
            messages=[
                {"role": "system", "content": "You are a helpful generator which read the short paragraphs and answer the question."},
                {"role": "user", "content": chat_history},
                {"role": "user", "content": question},
            ]
        )

        if language != 'English':
            response_content = translate_text(response.choices[0].message['content'], language)
        else:
            response_content = response.choices[0].message['content']

        st.text("Answer: " + response_content)

term = st.text_input("Enter a term you want to define:")

if term:
    # Define the term using OpenAI API
    definition = explain_term(term)

    if language != 'English':
        definition = translate_text(definition, language)

    st.text("Definition: " + definition)