Jimmyzheng-10's picture
Add app.py and the screencoder repo
a383d0e
import numpy as np
import cv2
from collections import Counter
import lib_ip.ip_draw as draw
from config.CONFIG_UIED import Config
C = Config()
# detect object(connected region)
# def boundary_bfs_connected_area(img, x, y, mark):
# def neighbor(img, x, y, mark, stack):
# for i in range(x - 1, x + 2):
# if i < 0 or i >= img.shape[0]: continue
# for j in range(y - 1, y + 2):
# if j < 0 or j >= img.shape[1]: continue
# if img[i, j] == 255 and mark[i, j] == 0:
# stack.append([i, j])
# mark[i, j] = 255
#
# stack = [[x, y]] # points waiting for inspection
# area = [[x, y]] # points of this area
# mark[x, y] = 255 # drawing broad
#
# while len(stack) > 0:
# point = stack.pop()
# area.append(point)
# neighbor(img, point[0], point[1], mark, stack)
# return area
# def line_check_perpendicular(lines_h, lines_v, max_thickness):
# """
# lines: [line_h, line_v]
# -> line_h: horizontal {'head':(column_min, row), 'end':(column_max, row), 'thickness':int)
# -> line_v: vertical {'head':(column, row_min), 'end':(column, row_max), 'thickness':int}
# """
# is_per_h = np.full(len(lines_h), False)
# is_per_v = np.full(len(lines_v), False)
# for i in range(len(lines_h)):
# # save the intersection point of h
# lines_h[i]['inter_point'] = set()
# h = lines_h[i]
#
# for j in range(len(lines_v)):
# # save the intersection point of v
# if 'inter_point' not in lines_v[j]: lines_v[j]['inter_point'] = set()
# v = lines_v[j]
#
# # if h is perpendicular to v in head of v
# if abs(h['head'][1]-v['head'][1]) <= max_thickness:
# if abs(h['head'][0] - v['head'][0]) <= max_thickness:
# lines_h[i]['inter_point'].add('head')
# lines_v[j]['inter_point'].add('head')
# is_per_h[i] = True
# is_per_v[j] = True
# elif abs(h['end'][0] - v['head'][0]) <= max_thickness:
# lines_h[i]['inter_point'].add('end')
# lines_v[j]['inter_point'].add('head')
# is_per_h[i] = True
# is_per_v[j] = True
#
# # if h is perpendicular to v in end of v
# elif abs(h['head'][1]-v['end'][1]) <= max_thickness:
# if abs(h['head'][0] - v['head'][0]) <= max_thickness:
# lines_h[i]['inter_point'].add('head')
# lines_v[j]['inter_point'].add('end')
# is_per_h[i] = True
# is_per_v[j] = True
# elif abs(h['end'][0] - v['head'][0]) <= max_thickness:
# lines_h[i]['inter_point'].add('end')
# lines_v[j]['inter_point'].add('end')
# is_per_h[i] = True
# is_per_v[j] = True
# per_h = []
# per_v = []
# for i in range(len(is_per_h)):
# if is_per_h[i]:
# lines_h[i]['inter_point'] = list(lines_h[i]['inter_point'])
# per_h.append(lines_h[i])
# for i in range(len(is_per_v)):
# if is_per_v[i]:
# lines_v[i]['inter_point'] = list(lines_v[i]['inter_point'])
# per_v.append(lines_v[i])
# return per_h, per_v
# def line_shrink_corners(corner, lines_h, lines_v):
# """
# shrink the corner according to lines:
# col_min_shrink: shrink right (increase)
# col_max_shrink: shrink left (decrease)
# row_min_shrink: shrink down (increase)
# row_max_shrink: shrink up (decrease)
# :param lines_h: horizontal {'head':(column_min, row), 'end':(column_max, row), 'thickness':int)
# :param lines_v: vertical {'head':(column, row_min), 'end':(column, row_max), 'thickness':int}
# :return: shrunken corner: (top_left, bottom_right)
# """
# (col_min, row_min), (col_max, row_max) = corner
# col_min_shrink, row_min_shrink = col_min, row_min
# col_max_shrink, row_max_shrink = col_max, row_max
# valid_frame = False
#
# for h in lines_h:
# # ignore outer border
# if len(h['inter_point']) == 2:
# valid_frame = True
# continue
# # shrink right -> col_min move to end
# if h['inter_point'][0] == 'head':
# col_min_shrink = max(h['end'][0], col_min_shrink)
# # shrink left -> col_max move to head
# elif h['inter_point'][0] == 'end':
# col_max_shrink = min(h['head'][0], col_max_shrink)
#
# for v in lines_v:
# # ignore outer border
# if len(v['inter_point']) == 2:
# valid_frame = True
# continue
# # shrink down -> row_min move to end
# if v['inter_point'][0] == 'head':
# row_min_shrink = max(v['end'][1], row_min_shrink)
# # shrink up -> row_max move to head
# elif v['inter_point'][0] == 'end':
# row_max_shrink = min(v['head'][1], row_max_shrink)
#
# # return the shrunken corner if only there is line intersecting with two other lines
# if valid_frame:
# return (col_min_shrink, row_min_shrink), (col_max_shrink, row_max_shrink)
# return corner
# def line_cvt_relative_position(col_min, row_min, lines_h, lines_v):
# """
# convert the relative position of lines in the entire image
# :param col_min: based column the img lines belong to
# :param row_min: based row the img lines belong to
# :param lines_h: horizontal {'head':(column_min, row), 'end':(column_max, row), 'thickness':int)
# :param lines_v: vertical {'head':(column, row_min), 'end':(column, row_max), 'thickness':int}
# :return: lines_h_cvt, lines_v_cvt
# """
# for h in lines_h:
# h['head'][0] += col_min
# h['head'][1] += row_min
# h['end'][0] += col_min
# h['end'][1] += row_min
# for v in lines_v:
# v['head'][0] += col_min
# v['head'][1] += row_min
# v['end'][0] += col_min
# v['end'][1] += row_min
#
# return lines_h, lines_v
# check if an object is so slim
# @boundary: [border_up, border_bottom, border_left, border_right]
# -> up, bottom: (column_index, min/max row border)
# -> left, right: (row_index, min/max column border) detect range of each row
def clipping_by_line(boundary, boundary_rec, lines):
boundary = boundary.copy()
for orient in lines:
# horizontal
if orient == 'h':
# column range of sub area
r1, r2 = 0, 0
for line in lines[orient]:
if line[0] == 0:
r1 = line[1]
continue
r2 = line[0]
b_top = []
b_bottom = []
for i in range(len(boundary[0])):
if r2 > boundary[0][i][0] >= r1:
b_top.append(boundary[0][i])
for i in range(len(boundary[1])):
if r2 > boundary[1][i][0] >= r1:
b_bottom.append(boundary[1][i])
b_left = [x for x in boundary[2]] # (row_index, min column border)
for i in range(len(b_left)):
if b_left[i][1] < r1:
b_left[i][1] = r1
b_right = [x for x in boundary[3]] # (row_index, max column border)
for i in range(len(b_right)):
if b_right[i][1] > r2:
b_right[i][1] = r2
boundary_rec.append([b_top, b_bottom, b_left, b_right])
r1 = line[1]
# remove imgs that contain text
# def rm_text(org, corners, compo_class,
# max_text_height=C.THRESHOLD_TEXT_MAX_HEIGHT, max_text_width=C.THRESHOLD_TEXT_MAX_WIDTH,
# ocr_padding=C.OCR_PADDING, ocr_min_word_area=C.OCR_MIN_WORD_AREA, show=False):
# """
# Remove area that full of text
# :param org: original image
# :param corners: [(top_left, bottom_right)]
# -> top_left: (column_min, row_min)
# -> bottom_right: (column_max, row_max)
# :param compo_class: classes of corners
# :param max_text_height: Too large to be text
# :param max_text_width: Too large to be text
# :param ocr_padding: Padding for clipping
# :param ocr_min_word_area: If too text area ratio is too large
# :param show: Show or not
# :return: corners without text objects
# """
# new_corners = []
# new_class = []
# for i in range(len(corners)):
# corner = corners[i]
# (top_left, bottom_right) = corner
# (col_min, row_min) = top_left
# (col_max, row_max) = bottom_right
# height = row_max - row_min
# width = col_max - col_min
# # highly likely to be block or img if too large
# if height > max_text_height and width > max_text_width:
# new_corners.append(corner)
# new_class.append(compo_class[i])
# else:
# row_min = row_min - ocr_padding if row_min - ocr_padding >= 0 else 0
# row_max = row_max + ocr_padding if row_max + ocr_padding < org.shape[0] else org.shape[0]
# col_min = col_min - ocr_padding if col_min - ocr_padding >= 0 else 0
# col_max = col_max + ocr_padding if col_max + ocr_padding < org.shape[1] else org.shape[1]
# # check if this area is text
# clip = org[row_min: row_max, col_min: col_max]
# if not ocr.is_text(clip, ocr_min_word_area, show=show):
# new_corners.append(corner)
# new_class.append(compo_class[i])
# return new_corners, new_class
# def rm_img_in_compo(corners_img, corners_compo):
# """
# Remove imgs in component
# """
# corners_img_new = []
# for img in corners_img:
# is_nested = False
# for compo in corners_compo:
# if util.corner_relation(img, compo) == -1:
# is_nested = True
# break
# if not is_nested:
# corners_img_new.append(img)
# return corners_img_new
# def block_or_compo(org, binary, corners,
# max_thickness=C.THRESHOLD_BLOCK_MAX_BORDER_THICKNESS, max_block_cross_points=C.THRESHOLD_BLOCK_MAX_CROSS_POINT,
# min_compo_w_h_ratio=C.THRESHOLD_UICOMPO_MIN_W_H_RATIO, max_compo_w_h_ratio=C.THRESHOLD_UICOMPO_MAX_W_H_RATIO,
# min_block_edge=C.THRESHOLD_BLOCK_MIN_EDGE_LENGTH):
# """
# Check if the objects are img components or just block
# :param org: Original image
# :param binary: Binary image from pre-processing
# :param corners: [(top_left, bottom_right)]
# -> top_left: (column_min, row_min)
# -> bottom_right: (column_max, row_max)
# :param max_thickness: The max thickness of border of blocks
# :param max_block_cross_points: Ratio of point of interaction
# :return: corners of blocks and imgs
# """
# blocks = []
# imgs = []
# compos = []
# for corner in corners:
# (top_left, bottom_right) = corner
# (col_min, row_min) = top_left
# (col_max, row_max) = bottom_right
# height = row_max - row_min
# width = col_max - col_min
#
# block = False
# vacancy = [0, 0, 0, 0]
# for i in range(1, max_thickness):
# try:
# # top to bottom
# if vacancy[0] == 0 and (col_max - col_min - 2 * i) is not 0 and (
# np.sum(binary[row_min + i, col_min + i: col_max - i]) / 255) / (col_max - col_min - 2 * i) <= max_block_cross_points:
# vacancy[0] = 1
# # bottom to top
# if vacancy[1] == 0 and (col_max - col_min - 2 * i) is not 0 and (
# np.sum(binary[row_max - i, col_min + i: col_max - i]) / 255) / (col_max - col_min - 2 * i) <= max_block_cross_points:
# vacancy[1] = 1
# # left to right
# if vacancy[2] == 0 and (row_max - row_min - 2 * i) is not 0 and (
# np.sum(binary[row_min + i: row_max - i, col_min + i]) / 255) / (row_max - row_min - 2 * i) <= max_block_cross_points:
# vacancy[2] = 1
# # right to left
# if vacancy[3] == 0 and (row_max - row_min - 2 * i) is not 0 and (
# np.sum(binary[row_min + i: row_max - i, col_max - i]) / 255) / (row_max - row_min - 2 * i) <= max_block_cross_points:
# vacancy[3] = 1
# if np.sum(vacancy) == 4:
# block = True
# except:
# pass
#
# # too big to be UI components
# if block:
# if height > min_block_edge and width > min_block_edge:
# blocks.append(corner)
# else:
# if min_compo_w_h_ratio < width / height < max_compo_w_h_ratio:
# compos.append(corner)
# # filter out small objects
# else:
# if height > min_block_edge:
# imgs.append(corner)
# else:
# if min_compo_w_h_ratio < width / height < max_compo_w_h_ratio:
# compos.append(corner)
# return blocks, imgs, compos
# def compo_on_img(processing, org, binary, clf,
# compos_corner, compos_class):
# """
# Detect potential UI components inner img;
# Only leave non-img
# """
# pad = 2
# for i in range(len(compos_corner)):
# if compos_class[i] != 'img':
# continue
# ((col_min, row_min), (col_max, row_max)) = compos_corner[i]
# col_min = max(col_min - pad, 0)
# col_max = min(col_max + pad, org.shape[1])
# row_min = max(row_min - pad, 0)
# row_max = min(row_max + pad, org.shape[0])
# area = (col_max - col_min) * (row_max - row_min)
# if area < 600:
# continue
#
# clip_org = org[row_min:row_max, col_min:col_max]
# clip_bin_inv = pre.reverse_binary(binary[row_min:row_max, col_min:col_max])
#
# compos_boundary_new, compos_corner_new, compos_class_new = processing(clip_org, clip_bin_inv, clf)
# compos_corner_new = util.corner_cvt_relative_position(compos_corner_new, col_min, row_min)
#
# assert len(compos_corner_new) == len(compos_class_new)
#
# # only leave non-img elements
# for i in range(len(compos_corner_new)):
# ((col_min_new, row_min_new), (col_max_new, row_max_new)) = compos_corner_new[i]
# area_new = (col_max_new - col_min_new) * (row_max_new - row_min_new)
# if compos_class_new[i] != 'img' and area_new / area < 0.8:
# compos_corner.append(compos_corner_new[i])
# compos_class.append(compos_class_new[i])
#
# return compos_corner, compos_class
# def strip_img(corners_compo, compos_class, corners_img):
# """
# Separate img from other compos
# :return: compos without img
# """
# corners_compo_withuot_img = []
# compo_class_withuot_img = []
# for i in range(len(compos_class)):
# if compos_class[i] == 'img':
# corners_img.append(corners_compo[i])
# else:
# corners_compo_withuot_img.append(corners_compo[i])
# compo_class_withuot_img.append(compos_class[i])
# return corners_compo_withuot_img, compo_class_withuot_img
# def merge_corner(corners, compos_class, min_selected_IoU=C.THRESHOLD_MIN_IOU, is_merge_nested_same=True):
# """
# Calculate the Intersection over Overlap (IoU) and merge corners according to the value of IoU
# :param is_merge_nested_same: if true, merge the nested corners with same class whatever the IoU is
# :param corners: corners: [(top_left, bottom_right)]
# -> top_left: (column_min, row_min)
# -> bottom_right: (column_max, row_max)
# :return: new corners
# """
# new_corners = []
# new_class = []
# for i in range(len(corners)):
# is_intersected = False
# for j in range(len(new_corners)):
# r = util.corner_relation_nms(corners[i], new_corners[j], min_selected_IoU)
# # r = util.corner_relation(corners[i], new_corners[j])
# if is_merge_nested_same:
# if compos_class[i] == new_class[j]:
# # if corners[i] is in new_corners[j], ignore corners[i]
# if r == -1:
# is_intersected = True
# break
# # if new_corners[j] is in corners[i], replace new_corners[j] with corners[i]
# elif r == 1:
# is_intersected = True
# new_corners[j] = corners[i]
#
# # if above IoU threshold, and corners[i] is in new_corners[j], ignore corners[i]
# if r == -2:
# is_intersected = True
# break
# # if above IoU threshold, and new_corners[j] is in corners[i], replace new_corners[j] with corners[i]
# elif r == 2:
# is_intersected = True
# new_corners[j] = corners[i]
# new_class[j] = compos_class[i]
#
# # containing and too small
# elif r == -3:
# is_intersected = True
# break
# elif r == 3:
# is_intersected = True
# new_corners[j] = corners[i]
#
# # if [i] and [j] are overlapped but no containing relation, merge corners when same class
# elif r == 4:
# is_intersected = True
# if compos_class[i] == new_class[j]:
# new_corners[j] = util.corner_merge_two_corners(corners[i], new_corners[j])
#
# if not is_intersected:
# new_corners.append(corners[i])
# new_class.append(compos_class[i])
# return new_corners, new_class
# def select_corner(corners, compos_class, class_name):
# """
# Select corners in given compo type
# """
# corners_wanted = []
# for i in range(len(compos_class)):
# if compos_class[i] == class_name:
# corners_wanted.append(corners[i])
# return corners_wanted
# def flood_fill_bfs(img, x_start, y_start, mark, grad_thresh):
# def neighbor(x, y):
# for i in range(x - 1, x + 2):
# if i < 0 or i >= img.shape[0]: continue
# for j in range(y - 1, y + 2):
# if j < 0 or j >= img.shape[1]: continue
# if mark[i, j] == 0 and abs(img[i, j] - img[x, y]) < grad_thresh:
# stack.append([i, j])
# mark[i, j] = 255
#
# stack = [[x_start, y_start]] # points waiting for inspection
# region = [[x_start, y_start]] # points of this connected region
# mark[x_start, y_start] = 255 # drawing broad
# while len(stack) > 0:
# point = stack.pop()
# region.append(point)
# neighbor(point[0], point[1])
# return region