File size: 983 Bytes
4d7c596
 
 
 
 
 
 
 
1d407e4
bb643a2
4d7c596
 
 
 
bb643a2
4d7c596
 
 
 
bb643a2
 
4d7c596
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import torch, os, gc, random
import gradio as gr
from PIL import Image
from diffusers.utils import load_image
from accelerate import Accelerator
from diffusers import StableDiffusionXLPipeline
accelerator = Accelerator(cpu=True)

pipe = accelerator.prepare(StableDiffusionXLPipeline.from_pretrained("segmind/SSD-1B", torch_dtype=torch.bfloat16, use_safetensors=True, variant="fp16"))
pipe.to("cpu")

def plex(prompt,neg_prompt,stips):
    apol=[]
    
    image = pipe(prompt=[prompt]*2, negative_prompt=[neg_prompt]*2, num_inference_steps=stips, output_type="pil")
    for i, imge in enumerate(image["images"]):
        apol.append(imge)
    return apol

iface = gr.Interface(fn=plex, inputs=[gr.Textbox(label="prompt"),gr.Textbox(label="negative prompt",value="ugly, blurry, poor quality"), gr.Slider(label="num inference steps", minimum=1, step=1, maximum=5, value=4)], outputs=gr.Gallery(label="out", columns=2))
iface.queue(max_size=1,api_open=False)
iface.launch(max_threads=1)