JoPmt's picture
Update app.py
bb643a2
raw
history blame
983 Bytes
import torch, os, gc, random
import gradio as gr
from PIL import Image
from diffusers.utils import load_image
from accelerate import Accelerator
from diffusers import StableDiffusionXLPipeline
accelerator = Accelerator(cpu=True)
pipe = accelerator.prepare(StableDiffusionXLPipeline.from_pretrained("segmind/SSD-1B", torch_dtype=torch.bfloat16, use_safetensors=True, variant="fp16"))
pipe.to("cpu")
def plex(prompt,neg_prompt,stips):
apol=[]
image = pipe(prompt=[prompt]*2, negative_prompt=[neg_prompt]*2, num_inference_steps=stips, output_type="pil")
for i, imge in enumerate(image["images"]):
apol.append(imge)
return apol
iface = gr.Interface(fn=plex, inputs=[gr.Textbox(label="prompt"),gr.Textbox(label="negative prompt",value="ugly, blurry, poor quality"), gr.Slider(label="num inference steps", minimum=1, step=1, maximum=5, value=4)], outputs=gr.Gallery(label="out", columns=2))
iface.queue(max_size=1,api_open=False)
iface.launch(max_threads=1)