File size: 78,612 Bytes
9decf80 f7b283c 9decf80 f7b283c 9decf80 f7b283c 9decf80 f7b283c 9decf80 f7b283c 9decf80 f7b283c 2183656 f7b283c 2183656 f7b283c 2183656 f7b283c 2183656 f7b283c 19403c5 f7b283c 9decf80 f7b283c 9decf80 f7b283c 9decf80 f7b283c 9decf80 f7b283c 9decf80 f7b283c 9decf80 f7b283c 9decf80 f7b283c 9decf80 f7b283c 9decf80 f7b283c 9decf80 f7b283c 9decf80 f7b283c 9decf80 f7b283c 9decf80 2183656 9decf80 f7b283c 9decf80 f7b283c 9decf80 f7b283c 9decf80 f7b283c 9decf80 2183656 9decf80 2183656 9decf80 f7b283c 9decf80 f7b283c 9decf80 f7b283c 9decf80 f7b283c 9decf80 2183656 9decf80 2183656 9decf80 2183656 9decf80 f7b283c 9decf80 2183656 9decf80 2183656 f7b283c 9decf80 2183656 9decf80 f7b283c 9decf80 f7b283c 9decf80 f7b283c 2183656 9decf80 f7b283c 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 f7b283c 2183656 f7b283c 2183656 f7b283c 2183656 f7b283c 9decf80 2183656 f7b283c 9decf80 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 f7b283c 2183656 f7b283c 9decf80 f7b283c 9decf80 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 f7b283c 9decf80 2183656 9decf80 2183656 9decf80 f7b283c 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 19403c5 9decf80 2183656 9decf80 2183656 9decf80 19403c5 2183656 9decf80 2183656 9decf80 19403c5 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 9decf80 2183656 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 |
import time
from transformers import TFAutoModel, AutoTokenizer
import tensorflow as tf
import numpy as np
from typing import Generator, List, Tuple, Dict, Optional, Union, Any
import math
from dataclasses import dataclass
import json
from pathlib import Path
import datetime
import faiss
import gc
from response_quality_checker import ResponseQualityChecker
from cross_encoder_reranker import CrossEncoderReranker
from conversation_summarizer import DeviceAwareModel, Summarizer
from gpu_monitor import GPUMemoryMonitor
import absl.logging
from logger_config import config_logger
from tqdm.auto import tqdm
absl.logging.set_verbosity(absl.logging.WARNING)
logger = config_logger(__name__)
@dataclass
class ChatbotConfig:
"""Configuration for the RetrievalChatbot."""
vocab_size: int = 30526 # DistilBERT vocab size + special tokens
max_context_token_limit: int = 512
embedding_dim: int = 768
encoder_units: int = 256
num_attention_heads: int = 8
dropout_rate: float = 0.2
l2_reg_weight: float = 0.001
margin: float = 0.3
learning_rate: float = 0.001
min_text_length: int = 3
max_context_turns: int = 5
warmup_steps: int = 200
pretrained_model: str = 'distilbert-base-uncased'
dtype: str = 'float32'
freeze_embeddings: bool = False
embedding_batch_size: int = 128
# Additional configurations can be added here
def to_dict(self) -> dict:
"""Convert config to dictionary."""
return {k: str(v) if isinstance(v, Path) else v
for k, v in self.__dict__.items()}
@classmethod
def from_dict(cls, config_dict: dict) -> 'ChatbotConfig':
"""Create config from dictionary."""
return cls(**{k: v for k, v in config_dict.items()
if k in cls.__dataclass_fields__})
class EncoderModel(tf.keras.Model):
"""Dual encoder model with pretrained embeddings."""
def __init__(
self,
config: ChatbotConfig,
name: str = "encoder",
shared_weights: bool = False,
**kwargs
):
super().__init__(name=name, **kwargs)
self.config = config
self.shared_weights = shared_weights
# Load pretrained model
self.pretrained = TFAutoModel.from_pretrained(config.pretrained_model)
# Freeze pretrained weights if specified
self.pretrained.distilbert.embeddings.trainable = False
for i, layer_module in enumerate(self.pretrained.distilbert.transformer.layer):
if i < 1: # freeze first layer
layer_module.trainable = False
else:
layer_module.trainable = True
# Pooling layer (Global Average Pooling)
self.pooler = tf.keras.layers.GlobalAveragePooling1D()
# Projection layer
self.projection = tf.keras.layers.Dense(
config.embedding_dim,
activation='tanh',
name="projection"
)
# Dropout and normalization
self.dropout = tf.keras.layers.Dropout(config.dropout_rate)
self.normalize = tf.keras.layers.Lambda(
lambda x: tf.nn.l2_normalize(x, axis=1)
)
def call(self, inputs: tf.Tensor, training: bool = False) -> tf.Tensor:
"""Forward pass."""
# Get pretrained embeddings
pretrained_outputs = self.pretrained(inputs, training=training)
x = pretrained_outputs.last_hidden_state # Shape: [batch_size, seq_len, embedding_dim]
# Apply pooling, projection, dropout, and normalization
x = self.pooler(x) # Shape: [batch_size, 768]
x = self.projection(x) # Shape: [batch_size, 768]
x = self.dropout(x, training=training) # Apply dropout
x = self.normalize(x) # Shape: [batch_size, 768]
return x
def get_config(self) -> dict:
"""Return the config of the model."""
config = super().get_config()
config.update({
"config": self.config.to_dict(),
"shared_weights": self.shared_weights,
"name": self.name
})
return config
class RetrievalChatbot(DeviceAwareModel):
"""Retrieval-based chatbot using pretrained embeddings and FAISS for similarity search."""
def __init__(self, config: ChatbotConfig, dialogues: List[dict] = [], device: str = None,
strategy=None, reranker: Optional[CrossEncoderReranker] = None,
summarizer: Optional[Summarizer] = None
):
self.config = config
self.strategy = strategy
self.setup_device(device)
if reranker is None:
logger.info("Creating default CrossEncoderReranker...")
reranker = CrossEncoderReranker(model_name="cross-encoder/ms-marco-MiniLM-L-12-v2")
self.reranker = reranker
if summarizer is None:
logger.info("Creating default Summarizer...")
summarizer = Summarizer(device=self.device)
self.summarizer = summarizer
# Special tokens
self.special_tokens = {
"user": "<USER>",
"assistant": "<ASSISTANT>",
"context": "<CONTEXT>",
"sep": "<SEP>"
}
# Initialize tokenizer and add special tokens
self.tokenizer = AutoTokenizer.from_pretrained(config.pretrained_model)
self.tokenizer.add_special_tokens(
{'additional_special_tokens': list(self.special_tokens.values())}
)
self.memory_monitor = GPUMemoryMonitor()
self.min_batch_size = 8
self.max_batch_size = 128
self.current_batch_size = 32
# Collect unique responses from dialogues
self.response_pool, self.unique_responses = self._collect_responses(dialogues)
# Initialize training history
self.history = {
"train_loss": [],
"val_loss": [],
"train_metrics": {},
"val_metrics": {}
}
def build_models(self):
"""Initialize the shared encoder."""
logger.info("Building encoder model...")
tf.keras.backend.clear_session()
# Shared encoder for both queries and responses
self.encoder = EncoderModel(
self.config,
name="shared_encoder",
)
# Resize token embeddings after adding special tokens
new_vocab_size = len(self.tokenizer)
self.encoder.pretrained.resize_token_embeddings(new_vocab_size)
logger.info(f"Token embeddings resized to: {new_vocab_size}")
# Initialize FAISS index (moved here from __init__)
self._initialize_faiss()
# Compute embeddings after FAISS is initialized and moved
self._compute_and_index_embeddings()
# Try different ways to get embedding dimension
try:
# First try: from config
embedding_dim = self.encoder.pretrained.config.dim
logger.info("Got embedding dim from config")
except AttributeError:
try:
# Second try: from word embeddings
embedding_dim = self.encoder.pretrained.distilbert.embeddings.word_embeddings.embedding_dim
logger.info("Got embedding dim from word embeddings")
except AttributeError:
try:
# Third try: from embeddings module
embedding_dim = self.encoder.pretrained.distilbert.embeddings.embedding_dim
logger.info("Got embedding dim from embeddings module")
except AttributeError:
# Fallback to config value
embedding_dim = self.config.embedding_dim
logger.info("Using config embedding dim")
vocab_size = len(self.tokenizer)
logger.info(f"Encoder Embedding Dimension: {embedding_dim}")
logger.info(f"Encoder Embedding Vocabulary Size: {vocab_size}")
if vocab_size >= embedding_dim:
logger.info("Encoder model built and embeddings resized successfully.")
else:
logger.error("Vocabulary size is less than embedding dimension.")
raise ValueError("Vocabulary size is less than embedding dimension.")
def _collect_responses(self, dialogues: List[dict]) -> Tuple[List[str], List[str]]:
"""Collect all unique responses from dialogues."""
logger.info("Collecting responses from dialogues...")
responses = []
try:
progress_bar = tqdm(dialogues, desc="Collecting assistant responses")
except ImportError:
progress_bar = dialogues
logger.info("Progress bar disabled - continuing without visual progress")
for dialogue in progress_bar:
turns = dialogue.get('turns', [])
for turn in turns:
if turn.get('speaker') == 'assistant' and 'text' in turn:
responses.append(turn['text'].strip())
# Remove duplicates
unique_responses = list(set(responses))
logger.info(f"Found {len(unique_responses)} unique responses.")
return responses, unique_responses
def _adjust_batch_size(self) -> None:
"""Dynamically adjust batch size based on GPU memory usage."""
if self.memory_monitor.should_reduce_batch_size():
new_size = max(self.min_batch_size, self.current_batch_size // 2)
if new_size != self.current_batch_size:
logger.info(f"Reducing batch size to {new_size} due to high memory usage")
self.current_batch_size = new_size
gc.collect()
if tf.config.list_physical_devices('GPU'):
tf.keras.backend.clear_session()
elif self.memory_monitor.can_increase_batch_size():
new_size = min(self.max_batch_size, self.current_batch_size * 2)
if new_size != self.current_batch_size:
logger.info(f"Increasing batch size to {new_size}")
self.current_batch_size = new_size
def _initialize_faiss(self):
"""Initialize FAISS with safer GPU handling and memory monitoring."""
logger.info("Initializing FAISS index...")
# First, detect if we have GPU-enabled FAISS
self.faiss_gpu = False
self.gpu_resources = []
try:
if hasattr(faiss, 'get_num_gpus'):
ngpus = faiss.get_num_gpus()
if ngpus > 0:
# Configure GPU resources with memory limit
for i in range(ngpus):
res = faiss.StandardGpuResources()
# Set temp memory to 1/4 of total memory to avoid OOM
if self.memory_monitor.has_gpu:
stats = self.memory_monitor.get_memory_stats()
if stats:
temp_memory = int(stats.total * 0.25) # 25% of total memory
res.setTempMemory(temp_memory)
self.gpu_resources.append(res)
self.faiss_gpu = True
logger.info(f"FAISS GPU resources initialized on {ngpus} GPUs")
else:
logger.info("Using CPU-only FAISS build")
except Exception as e:
logger.warning(f"Using CPU due to GPU initialization error: {e}")
# TODO: figure out buf with faiss-gpu
try:
# Create appropriate index based on dataset size
if len(self.unique_responses) < 1000:
logger.info("Small dataset detected, using simple FlatIP index")
self.index = faiss.IndexFlatIP(self.config.embedding_dim)
else:
# Use IVF index with dynamic number of clusters
# nlist = min(
# 25, # max clusters
# max(int(math.sqrt(len(self.unique_responses))), 1) # min 1 cluster
# )
# logger.info(f"Using IVF index with {nlist} clusters")
# quantizer = faiss.IndexFlatIP(self.config.embedding_dim)
# self.index = faiss.IndexIVFFlat(
# quantizer,
# self.config.embedding_dim,
# nlist,
# faiss.METRIC_INNER_PRODUCT
# )
self.index = faiss.IndexFlatIP(self.config.embedding_dim)
# # Move to GPU(s) if available
# if self.faiss_gpu and self.gpu_resources:
# try:
# if len(self.gpu_resources) > 1:
# self.index = faiss.index_cpu_to_gpus_list(self.index, self.gpu_resources)
# logger.info("FAISS index distributed across multiple GPUs")
# else:
# self.index = faiss.index_cpu_to_gpu(self.gpu_resources[0], 0, self.index)
# logger.info("FAISS index moved to single GPU")
# except Exception as e:
# logger.warning(f"Failed to move index to GPU: {e}. Falling back to CPU")
# self.faiss_gpu = False
# # Set search parameters for IVF index
# if isinstance(self.index, faiss.IndexIVFFlat):
# self.index.nprobe = min(10, nlist)
except Exception as e:
logger.error(f"Error initializing FAISS: {e}")
raise
def encode_responses(
self,
responses: List[str],
batch_size: int = 64
) -> tf.Tensor:
"""
Encodes responses with more conservative memory management.
"""
all_embeddings = []
self.current_batch_size = batch_size
if self.memory_monitor.has_gpu:
batch_size = 128
# Memory stats
# if self.memory_monitor.has_gpu:
# initial_stats = self.memory_monitor.get_memory_stats()
# if initial_stats:
# logger.info("Initial GPU memory state:")
# logger.info(f"Total: {initial_stats.total / 1e9:.2f}GB")
# logger.info(f"Used: {initial_stats.used / 1e9:.2f}GB")
# logger.info(f"Free: {initial_stats.free / 1e9:.2f}GB")
total_processed = 0
with tqdm(total=len(responses), desc="Encoding responses") as pbar:
while total_processed < len(responses):
# Monitor memory and adjust batch size
if self.memory_monitor.has_gpu:
gpu_usage = self.memory_monitor.get_memory_usage()
if gpu_usage > 0.8: # Over 80% usage
self.current_batch_size = max(128, self.current_batch_size // 2)
logger.info(f"High GPU memory usage ({gpu_usage:.1%}), reducing batch size to {self.current_batch_size}")
gc.collect()
tf.keras.backend.clear_session()
# Get batch
end_idx = min(total_processed + self.current_batch_size, len(responses))
batch_texts = responses[total_processed:end_idx]
try:
# Tokenize
encodings = self.tokenizer(
batch_texts,
padding='max_length',
truncation=True,
max_length=self.config.max_context_token_limit,
return_tensors='tf'
)
# Encode
embeddings_batch = self.encoder(encodings['input_ids'], training=False)
# Cast to float32
if embeddings_batch.dtype != tf.float32:
embeddings_batch = tf.cast(embeddings_batch, tf.float32)
# Store
all_embeddings.append(embeddings_batch)
# Update progress
batch_processed = len(batch_texts)
total_processed += batch_processed
# Update progress bar
if self.memory_monitor.has_gpu:
gpu_usage = self.memory_monitor.get_memory_usage()
pbar.set_postfix({
'GPU mem': f'{gpu_usage:.1%}',
'batch_size': self.current_batch_size
})
pbar.update(batch_processed)
# Memory cleanup every 1000 samples
if total_processed % 1000 == 0:
gc.collect()
if tf.config.list_physical_devices('GPU'):
tf.keras.backend.clear_session()
except tf.errors.ResourceExhaustedError:
logger.warning("GPU memory exhausted during encoding, reducing batch size")
self.current_batch_size = max(8, self.current_batch_size // 2)
continue
except Exception as e:
logger.error(f"Error during encoding: {str(e)}")
raise
# Concatenate results
#logger.info("Concatenating embeddings...")
if len(all_embeddings) == 1:
final_embeddings = all_embeddings[0]
else:
final_embeddings = tf.concat(all_embeddings, axis=0)
return final_embeddings
def _train_faiss_index(self, response_embeddings: np.ndarray) -> None:
"""Train FAISS index with better memory management and robust fallback mechanisms."""
if self.index.is_trained:
logger.info("Index already trained, skipping training phase")
return
logger.info("Starting FAISS index training...")
try:
# First attempt: Try training with smaller subset
subset_size = min(5000, len(response_embeddings)) # Reduced from 10000
logger.info(f"Using {subset_size} samples for initial training attempt")
subset_idx = np.random.choice(len(response_embeddings), subset_size, replace=False)
training_embeddings = response_embeddings[subset_idx].copy() # Make a copy
# Ensure contiguous memory layout
training_embeddings = np.ascontiguousarray(training_embeddings)
# Force cleanup before training
gc.collect()
if tf.config.list_physical_devices('GPU'):
tf.keras.backend.clear_session()
# Verify data properties
logger.info(f"FAISS training data shape: {training_embeddings.shape}")
logger.info(f"FAISS training data dtype: {training_embeddings.dtype}")
logger.info("Starting initial training attempt...")
self.index.train(training_embeddings)
logger.info("Training completed successfully")
except (RuntimeError, Exception) as e:
logger.warning(f"Initial training attempt failed: {str(e)}")
logger.info("Attempting fallback strategy...")
try:
# Move to CPU for more stable training
if self.faiss_gpu:
logger.info("Moving index to CPU for fallback training")
cpu_index = faiss.index_gpu_to_cpu(self.index)
else:
cpu_index = self.index
# Create simpler index type if needed
if isinstance(cpu_index, faiss.IndexIVFFlat):
logger.info("Creating simpler FlatL2 index for fallback")
cpu_index = faiss.IndexFlatL2(self.config.embedding_dim)
# Use even smaller subset for CPU training
subset_size = min(2000, len(response_embeddings))
subset_idx = np.random.choice(len(response_embeddings), subset_size, replace=False)
fallback_embeddings = response_embeddings[subset_idx].copy()
# Ensure data is properly formatted
if not fallback_embeddings.flags['C_CONTIGUOUS']:
fallback_embeddings = np.ascontiguousarray(fallback_embeddings)
if fallback_embeddings.dtype != np.float32:
fallback_embeddings = fallback_embeddings.astype(np.float32)
# Train on CPU
logger.info("Training fallback index on CPU...")
cpu_index.train(fallback_embeddings)
# Move back to GPU if needed
if self.faiss_gpu:
logger.info("Moving trained index back to GPU...")
if len(self.gpu_resources) > 1:
self.index = faiss.index_cpu_to_gpus_list(cpu_index, self.gpu_resources)
else:
self.index = faiss.index_cpu_to_gpu(self.gpu_resources[0], 0, cpu_index)
else:
self.index = cpu_index
logger.info("Fallback training completed successfully")
except Exception as e2:
logger.error(f"Fallback training also failed: {str(e2)}")
logger.warning("Creating basic brute-force index as last resort")
try:
# Create basic brute-force index as last resort
dim = response_embeddings.shape[1]
basic_index = faiss.IndexFlatL2(dim)
if self.faiss_gpu:
if len(self.gpu_resources) > 1:
self.index = faiss.index_cpu_to_gpus_list(basic_index, self.gpu_resources)
else:
self.index = faiss.index_cpu_to_gpu(self.gpu_resources[0], 0, basic_index)
else:
self.index = basic_index
logger.info("Basic index created as fallback")
except Exception as e3:
logger.error(f"All training attempts failed: {str(e3)}")
raise RuntimeError("Unable to create working FAISS index")
def _add_vectors_to_index(self, response_embeddings: np.ndarray) -> None:
"""Add vectors to FAISS index with enhanced memory management."""
logger.info("Starting vector addition process...")
# Even smaller batches
initial_batch_size = 128
min_batch_size = 32
max_batch_size = 1024
total_added = 0
retry_count = 0
max_retries = 5
while total_added < len(response_embeddings):
try:
# Monitor memory
if self.memory_monitor.has_gpu:
gpu_usage = self.memory_monitor.get_memory_usage()
#logger.info(f"GPU memory usage before batch: {gpu_usage:.1%}")
# Force cleanup if memory usage is high
if gpu_usage > 0.7: # Lower threshold to 70%
logger.info("High memory usage detected, forcing cleanup")
gc.collect()
tf.keras.backend.clear_session()
# Get batch
end_idx = min(total_added + initial_batch_size, len(response_embeddings))
batch = response_embeddings[total_added:end_idx]
# Add batch
self.index.add(batch)
# Update progress
batch_size = len(batch)
total_added += batch_size
# Memory cleanup every few batches
if total_added % (initial_batch_size * 5) == 0:
gc.collect()
if tf.config.list_physical_devices('GPU'):
tf.keras.backend.clear_session()
# Gradually increase batch size
if initial_batch_size < max_batch_size:
initial_batch_size = min(initial_batch_size + 25, max_batch_size)
except Exception as e:
logger.warning(f"Error adding batch: {str(e)}")
retry_count += 1
if retry_count > max_retries:
logger.error("Max retries exceeded.")
raise
# Reduce batch size
initial_batch_size = max(min_batch_size, initial_batch_size // 2)
logger.info(f"Reducing batch size to {initial_batch_size} and retrying...")
# Cleanup
gc.collect()
if tf.config.list_physical_devices('GPU'):
tf.keras.backend.clear_session()
time.sleep(1) # Brief pause before retry
logger.info(f"Successfully added all {total_added} vectors to index")
def _add_vectors_cpu_fallback(self, remaining_embeddings: np.ndarray, already_added: int = 0) -> None:
"""CPU fallback with extra safeguards and progress tracking."""
logger.info(f"CPU Fallback: Adding {len(remaining_embeddings)} remaining vectors...")
try:
# Move index to CPU
if self.faiss_gpu:
logger.info("Moving index to CPU...")
cpu_index = faiss.index_gpu_to_cpu(self.index)
else:
cpu_index = self.index
# Add remaining vectors on CPU with very small batches
batch_size = 128
total_added = already_added
for i in range(0, len(remaining_embeddings), batch_size):
end_idx = min(i + batch_size, len(remaining_embeddings))
batch = remaining_embeddings[i:end_idx]
# Add batch
cpu_index.add(batch)
# Update progress
total_added += len(batch)
if i % (batch_size * 10) == 0:
logger.info(f"Added {total_added} vectors total "
f"({i}/{len(remaining_embeddings)} in current phase)")
# Periodic cleanup
if i % (batch_size * 20) == 0:
gc.collect()
# Move back to GPU if needed
if self.faiss_gpu:
logger.info("Moving index back to GPU...")
if len(self.gpu_resources) > 1:
self.index = faiss.index_cpu_to_gpus_list(cpu_index, self.gpu_resources)
else:
self.index = faiss.index_cpu_to_gpu(self.gpu_resources[0], 0, cpu_index)
else:
self.index = cpu_index
logger.info("CPU fallback completed successfully")
except Exception as e:
logger.error(f"Error during CPU fallback: {str(e)}")
raise
def _compute_and_index_embeddings(self):
"""Compute embeddings and build FAISS index with simpler handling."""
logger.info("Computing embeddings and indexing with FAISS...")
try:
# Encode responses with memory monitoring
logger.info("Encoding unique responses")
response_embeddings = self.encode_responses(self.unique_responses)
response_embeddings = response_embeddings.numpy()
# Memory cleanup after encoding
gc.collect()
if tf.config.list_physical_devices('GPU'):
tf.keras.backend.clear_session()
# Ensure float32 and memory contiguous
response_embeddings = response_embeddings.astype('float32')
response_embeddings = np.ascontiguousarray(response_embeddings)
# Log memory state before normalization
if self.memory_monitor.has_gpu:
stats = self.memory_monitor.get_memory_stats()
if stats:
logger.info(f"GPU memory before normalization: {stats.used/1e9:.2f}GB used")
# Normalize embeddings
logger.info("Normalizing embeddings with FAISS")
faiss.normalize_L2(response_embeddings)
# Create and initialize simple FlatIP index
dim = response_embeddings.shape[1]
if self.faiss_gpu:
cpu_index = faiss.IndexFlatIP(dim)
if len(self.gpu_resources) > 1:
self.index = faiss.index_cpu_to_gpus_list(cpu_index, self.gpu_resources)
else:
self.index = faiss.index_cpu_to_gpu(self.gpu_resources[0], 0, cpu_index)
else:
self.index = faiss.IndexFlatIP(dim)
# Add vectors to index
self._add_vectors_to_index(response_embeddings)
# Store responses and embeddings
self.response_pool = self.unique_responses
self.response_embeddings = response_embeddings
# Final memory cleanup
gc.collect()
if tf.config.list_physical_devices('GPU'):
tf.keras.backend.clear_session()
# Log final state
logger.info(f"Successfully indexed {self.index.ntotal} responses")
if self.memory_monitor.has_gpu:
stats = self.memory_monitor.get_memory_stats()
if stats:
logger.info(f"Final GPU memory usage: {stats.used/1e9:.2f}GB used")
logger.info("Indexing completed successfully")
except Exception as e:
logger.error(f"Error during indexing: {e}")
# Ensure cleanup even on error
gc.collect()
if tf.config.list_physical_devices('GPU'):
tf.keras.backend.clear_session()
raise
def verify_faiss_index(self):
"""Verify that FAISS index matches the response pool."""
indexed_size = self.index.ntotal
pool_size = len(self.response_pool)
logger.info(f"FAISS index size: {indexed_size}")
logger.info(f"Response pool size: {pool_size}")
if indexed_size != pool_size:
logger.warning("Mismatch between FAISS index size and response pool size.")
else:
logger.info("FAISS index correctly matches the response pool.")
def encode_query(self, query: str, context: Optional[List[Tuple[str, str]]] = None) -> tf.Tensor:
"""Encode a query with optional conversation context."""
# Prepare query with context
if context:
context_str = ' '.join([
f"{self.special_tokens['user']} {q} "
f"{self.special_tokens['assistant']} {r}"
for q, r in context[-self.config.max_context_turns:]
])
query = f"{context_str} {self.special_tokens['user']} {query}"
else:
query = f"{self.special_tokens['user']} {query}"
# Tokenize and encode
encodings = self.tokenizer(
[query],
padding='max_length',
truncation=True,
max_length=self.config.max_context_token_limit,
return_tensors='tf'
)
input_ids = encodings['input_ids']
# Verify token IDs
max_id = tf.reduce_max(input_ids).numpy()
new_vocab_size = len(self.tokenizer)
if max_id >= new_vocab_size:
logger.error(f"Token ID {max_id} exceeds the vocabulary size {new_vocab_size}.")
raise ValueError("Token ID exceeds vocabulary size.")
# Get embeddings from the shared encoder
return self.encoder(input_ids, training=False)
def retrieve_responses_cross_encoder(
self,
query: str,
top_k: int,
reranker: Optional[CrossEncoderReranker] = None,
summarizer: Optional[Summarizer] = None,
summarize_threshold: int = 512 # Summarize over 512 tokens
) -> List[Tuple[str, float]]:
"""
Retrieve top-k from FAISS, then re-rank them with a cross-encoder.
Optionally summarize the user query if it's too long.
"""
if reranker is None:
reranker = self.reranker
if summarizer is None:
summarizer = self.summarizer
# Optional summarization
if summarizer and len(query.split()) > summarize_threshold:
logger.info(f"Query is long. Summarizing before cross-encoder. Original length: {len(query.split())}")
query = summarizer.summarize_text(query)
logger.info(f"Summarized query: {query}")
# 2) Dense retrieval
dense_topk = self.retrieve_responses_faiss(query, top_k=top_k) # [(resp, dense_score), ...]
if not dense_topk:
return []
# 3) Cross-encoder rerank
candidate_texts = [pair[0] for pair in dense_topk]
cross_scores = reranker.rerank(query, candidate_texts, max_length=256)
# Combine
combined = [(text, score) for (text, _), score in zip(dense_topk, cross_scores)]
# Sort descending by cross-encoder score
combined.sort(key=lambda x: x[1], reverse=True)
return combined
def retrieve_responses_faiss(self, query: str, top_k: int = 5) -> List[Tuple[str, float]]:
"""Retrieve top-k responses using FAISS."""
# Encode the query
q_emb = self.encode_query(query) # Shape: [1, embedding_dim]
q_emb_np = q_emb.numpy().astype('float32') # Ensure type match
# Normalize the query embedding for cosine similarity
faiss.normalize_L2(q_emb_np)
# Search the FAISS index
distances, indices = self.index.search(q_emb_np, top_k)
# Map indices to responses and distances to similarities
top_responses = []
for i, idx in enumerate(indices[0]):
if idx < len(self.response_pool):
top_responses.append((self.response_pool[idx], float(distances[0][i])))
else:
logger.warning(f"FAISS returned invalid index {idx}. Skipping.")
return top_responses
def save_models(self, save_dir: Union[str, Path]):
"""Save models and configuration."""
save_dir = Path(save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
# Save config
with open(save_dir / "config.json", "w") as f:
json.dump(self.config.to_dict(), f, indent=2)
# Save models
self.encoder.pretrained.save_pretrained(save_dir / "shared_encoder")
# Save tokenizer
self.tokenizer.save_pretrained(save_dir / "tokenizer")
logger.info(f"Models and tokenizer saved to {save_dir}.")
@classmethod
def load_models(cls, load_dir: Union[str, Path]) -> 'RetrievalChatbot':
"""Load saved models and configuration."""
load_dir = Path(load_dir)
# Load config
with open(load_dir / "config.json", "r") as f:
config = ChatbotConfig.from_dict(json.load(f))
# Initialize chatbot
chatbot = cls(config)
# Load models
chatbot.encoder.pretrained = TFAutoModel.from_pretrained(
load_dir / "shared_encoder",
config=config
)
# Load tokenizer
chatbot.tokenizer = AutoTokenizer.from_pretrained(load_dir / "tokenizer")
logger.info(f"Models and tokenizer loaded from {load_dir}.")
return chatbot
@staticmethod
def load_training_data(data_path: Union[str, Path], debug_samples: Optional[int] = None) -> List[dict]:
"""
Load training data from a JSON file.
Args:
data_path (Union[str, Path]): Path to the JSON file containing dialogues.
debug_samples (Optional[int]): Number of samples to load for debugging.
Returns:
List[dict]: List of dialogue dictionaries.
"""
logger.info(f"Loading training data from {data_path}...")
data_path = Path(data_path)
if not data_path.exists():
logger.error(f"Data file {data_path} does not exist.")
return []
with open(data_path, 'r', encoding='utf-8') as f:
dialogues = json.load(f)
if debug_samples is not None:
dialogues = dialogues[:debug_samples]
logger.info(f"Debug mode: Limited to {debug_samples} dialogues")
logger.info(f"Loaded {len(dialogues)} dialogues.")
return dialogues
def train_streaming(
self,
dialogues: List[dict],
epochs: int = 20,
batch_size: int = 16,
validation_split: float = 0.2,
checkpoint_dir: str = "checkpoints/",
use_lr_schedule: bool = True,
peak_lr: float = 2e-5,
warmup_steps_ratio: float = 0.1,
early_stopping_patience: int = 3,
min_delta: float = 1e-4,
neg_samples: int = 1
) -> None:
"""Streaming training with tf.data pipeline."""
logger.info("Starting streaming training pipeline with tf.data...")
# Initialize TFDataPipeline (replaces StreamingDataPipeline)
dataset_preparer = TFDataPipeline(
embedding_batch_size=self.config.embedding_batch_size,
tokenizer=self.tokenizer,
encoder=self.encoder,
index=self.index, # Pass CPU version of FAISS index
response_pool=self.response_pool,
max_length=self.config.max_context_token_limit,
neg_samples=neg_samples
)
# Calculate total steps for learning rate schedule
total_pairs = dataset_preparer.estimate_total_pairs(dialogues)
train_size = int(total_pairs * (1 - validation_split))
val_size = int(total_pairs * validation_split)
steps_per_epoch = int(math.ceil(train_size / batch_size))
val_steps = int(math.ceil(val_size / batch_size))
total_steps = steps_per_epoch * epochs
logger.info(f"Total pairs: {total_pairs}")
logger.info(f"Training pairs: {train_size}")
logger.info(f"Validation pairs: {val_size}")
logger.info(f"Steps per epoch: {steps_per_epoch}")
logger.info(f"Validation steps: {val_steps}")
logger.info(f"Total steps: {total_steps}")
# Set up optimizer with learning rate schedule
if use_lr_schedule:
warmup_steps = int(total_steps * warmup_steps_ratio)
lr_schedule = self._get_lr_schedule(
total_steps=total_steps,
peak_lr=peak_lr,
warmup_steps=warmup_steps
)
self.optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
logger.info("Using custom learning rate schedule.")
else:
self.optimizer = tf.keras.optimizers.Adam(learning_rate=peak_lr)
logger.info("Using fixed learning rate.")
# Initialize checkpoint manager
checkpoint = tf.train.Checkpoint(optimizer=self.optimizer, model=self.encoder)
manager = tf.train.CheckpointManager(checkpoint, checkpoint_dir, max_to_keep=3)
# Setup TensorBoard
log_dir = Path(checkpoint_dir) / "tensorboard_logs"
log_dir.mkdir(parents=True, exist_ok=True)
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
train_log_dir = str(log_dir / f"train_{current_time}")
val_log_dir = str(log_dir / f"val_{current_time}")
train_summary_writer = tf.summary.create_file_writer(train_log_dir)
val_summary_writer = tf.summary.create_file_writer(val_log_dir)
logger.info(f"TensorBoard logs will be saved in {log_dir}")
# Create training and validation datasets
train_dataset = dataset_preparer.get_tf_dataset(dialogues, batch_size).take(train_size)
val_dataset = dataset_preparer.get_tf_dataset(dialogues, batch_size).skip(train_size).take(val_size)
# Training loop
best_val_loss = float("inf")
epochs_no_improve = 0
for epoch in range(1, epochs + 1):
# --- Training Phase ---
epoch_loss_avg = tf.keras.metrics.Mean()
batches_processed = 0
try:
train_pbar = tqdm(total=steps_per_epoch, desc=f"Training Epoch {epoch}", unit="batch")
is_tqdm_train = True
except ImportError:
train_pbar = None
is_tqdm_train = False
logger.info("Training progress bar disabled")
for q_batch, p_batch, n_batch in train_dataset:
#p_batch = p_n_batch[:, 0, :] # Extract positive from (positive, negative) pair
loss = self.train_step(q_batch, p_batch, n_batch)
epoch_loss_avg(loss)
batches_processed += 1
# Log to TensorBoard
with train_summary_writer.as_default():
tf.summary.scalar("loss", loss, step=(epoch - 1) * steps_per_epoch + batches_processed)
# Update progress bar
if use_lr_schedule:
current_lr = float(lr_schedule(self.optimizer.iterations))
else:
current_lr = float(self.optimizer.learning_rate.numpy())
if is_tqdm_train:
train_pbar.update(1)
train_pbar.set_postfix({
"loss": f"{loss.numpy():.4f}",
"lr": f"{current_lr:.2e}",
"batches": f"{batches_processed}/{steps_per_epoch}"
})
# Memory cleanup
gc.collect()
if batches_processed >= steps_per_epoch:
break
if is_tqdm_train and train_pbar:
train_pbar.close()
# --- Validation Phase ---
val_loss_avg = tf.keras.metrics.Mean()
val_batches_processed = 0
try:
val_pbar = tqdm(total=val_steps, desc="Validation", unit="batch")
is_tqdm_val = True
except ImportError:
val_pbar = None
is_tqdm_val = False
logger.info("Validation progress bar disabled")
for q_batch, p_batch, n_batch in val_dataset:
#p_batch = p_n_batch[:, 0, :] # Extract positive from (positive, negative) pair
val_loss = self.validation_step(q_batch, p_batch, n_batch)
val_loss_avg(val_loss)
val_batches_processed += 1
if is_tqdm_val:
val_pbar.update(1)
val_pbar.set_postfix({
"val_loss": f"{val_loss.numpy():.4f}",
"batches": f"{val_batches_processed}/{val_steps}"
})
# Memory cleanup
gc.collect()
if val_batches_processed >= val_steps:
break
if is_tqdm_val and val_pbar:
val_pbar.close()
# End of epoch: compute final epoch stats, log, and save checkpoint
train_loss = epoch_loss_avg.result().numpy()
val_loss = val_loss_avg.result().numpy()
logger.info(f"Epoch {epoch} Complete: Train Loss={train_loss:.4f}, Val Loss={val_loss:.4f}")
# Log epoch metrics
with train_summary_writer.as_default():
tf.summary.scalar("epoch_loss", train_loss, step=epoch)
with val_summary_writer.as_default():
tf.summary.scalar("val_loss", val_loss, step=epoch)
# Save checkpoint
manager.save()
# Store metrics in history
self.history['train_loss'].append(train_loss)
self.history['val_loss'].append(val_loss)
if use_lr_schedule:
current_lr = float(lr_schedule(self.optimizer.iterations))
else:
current_lr = float(self.optimizer.learning_rate.numpy())
self.history.setdefault('learning_rate', []).append(current_lr)
# Early stopping logic
if val_loss < best_val_loss - min_delta:
best_val_loss = val_loss
epochs_no_improve = 0
logger.info(f"Validation loss improved to {val_loss:.4f}. Reset patience.")
else:
epochs_no_improve += 1
logger.info(f"No improvement this epoch. Patience: {epochs_no_improve}/{early_stopping_patience}")
if epochs_no_improve >= early_stopping_patience:
logger.info("Early stopping triggered.")
break
logger.info("Streaming training completed!")
@tf.function
def train_step(
self,
q_batch: tf.Tensor,
p_batch: tf.Tensor,
n_batch: tf.Tensor,
attention_mask: Optional[tf.Tensor] = None
) -> tf.Tensor:
"""
Single training step that uses queries, positives, and negatives in a
contrastive/InfoNCE style. The label is always 0 (the positive) vs.
the negative alternatives.
"""
with tf.GradientTape() as tape:
# Encode queries
q_enc = self.encoder(q_batch, training=True) # [batch_size, embed_dim]
# Encode positives
p_enc = self.encoder(p_batch, training=True) # [batch_size, embed_dim]
# Encode negatives
# n_batch: [batch_size, neg_samples, max_length]
shape = tf.shape(n_batch)
bs = shape[0]
neg_samples = shape[1]
# Flatten negatives to feed them in one pass:
# => [batch_size * neg_samples, max_length]
n_batch_flat = tf.reshape(n_batch, [bs * neg_samples, shape[2]])
n_enc_flat = self.encoder(n_batch_flat, training=True) # [bs*neg_samples, embed_dim]
# Reshape back => [batch_size, neg_samples, embed_dim]
n_enc = tf.reshape(n_enc_flat, [bs, neg_samples, -1])
# Combine the positive embedding and negative embeddings along dim=1
# => shape [batch_size, 1 + neg_samples, embed_dim]
# The first column is the positive; subsequent columns are negatives
combined_p_n = tf.concat(
[tf.expand_dims(p_enc, axis=1), n_enc],
axis=1
) # [bs, (1+neg_samples), embed_dim]
# Now compute scores: dot product of q_enc with each column in combined_p_n
# We'll use `tf.einsum` to handle the batch dimension properly
# dot_products => shape [batch_size, (1+neg_samples)]
dot_products = tf.einsum('bd,bkd->bk', q_enc, combined_p_n)
# The label for each row is 0 (the first column is the correct/positive)
labels = tf.zeros([bs], dtype=tf.int32)
# Cross-entropy over the [batch_size, 1+neg_samples] scores
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels,
logits=dot_products
)
loss = tf.reduce_mean(loss)
# If there's an attention_mask you want to apply (less common in this scenario),
# you could do something like:
if attention_mask is not None:
loss = loss * attention_mask
loss = tf.reduce_sum(loss) / tf.reduce_sum(attention_mask)
# Apply gradients
gradients = tape.gradient(loss, self.encoder.trainable_variables)
self.optimizer.apply_gradients(zip(gradients, self.encoder.trainable_variables))
return loss
@tf.function
def validation_step(
self,
q_batch: tf.Tensor,
p_batch: tf.Tensor,
n_batch: tf.Tensor,
attention_mask: Optional[tf.Tensor] = None
) -> tf.Tensor:
"""
Single validation step with queries, positives, and negatives.
Uses the same loss calculation as train_step, but `training=False`.
"""
q_enc = self.encoder(q_batch, training=False)
p_enc = self.encoder(p_batch, training=False)
shape = tf.shape(n_batch)
bs = shape[0]
neg_samples = shape[1]
n_batch_flat = tf.reshape(n_batch, [bs * neg_samples, shape[2]])
n_enc_flat = self.encoder(n_batch_flat, training=False)
n_enc = tf.reshape(n_enc_flat, [bs, neg_samples, -1])
combined_p_n = tf.concat(
[tf.expand_dims(p_enc, axis=1), n_enc],
axis=1
)
dot_products = tf.einsum('bd,bkd->bk', q_enc, combined_p_n)
labels = tf.zeros([bs], dtype=tf.int32)
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels,
logits=dot_products
)
loss = tf.reduce_mean(loss)
if attention_mask is not None:
loss = loss * attention_mask
loss = tf.reduce_sum(loss) / tf.reduce_sum(attention_mask)
return loss
def _get_lr_schedule(
self,
total_steps: int,
peak_lr: float,
warmup_steps: int
) -> tf.keras.optimizers.schedules.LearningRateSchedule:
"""Create a custom learning rate schedule with warmup and cosine decay."""
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
def __init__(
self,
total_steps: int,
peak_lr: float,
warmup_steps: int
):
super().__init__()
self.total_steps = tf.cast(total_steps, tf.float32)
self.peak_lr = tf.cast(peak_lr, tf.float32)
# Adjust warmup_steps to not exceed half of total_steps
adjusted_warmup_steps = min(warmup_steps, max(1, total_steps // 10))
self.warmup_steps = tf.cast(adjusted_warmup_steps, tf.float32)
# Calculate and store constants
self.initial_lr = self.peak_lr * 0.1 # Start at 10% of peak
self.min_lr = self.peak_lr * 0.01 # Minimum 1% of peak
logger.info(f"Learning rate schedule initialized:")
logger.info(f" Initial LR: {float(self.initial_lr):.6f}")
logger.info(f" Peak LR: {float(self.peak_lr):.6f}")
logger.info(f" Min LR: {float(self.min_lr):.6f}")
logger.info(f" Warmup steps: {int(self.warmup_steps)}")
logger.info(f" Total steps: {int(self.total_steps)}")
def __call__(self, step):
step = tf.cast(step, tf.float32)
# Warmup phase
warmup_factor = tf.minimum(1.0, step / self.warmup_steps)
warmup_lr = self.initial_lr + (self.peak_lr - self.initial_lr) * warmup_factor
# Decay phase
decay_steps = tf.maximum(1.0, self.total_steps - self.warmup_steps)
decay_factor = (step - self.warmup_steps) / decay_steps
decay_factor = tf.minimum(tf.maximum(0.0, decay_factor), 1.0) # Clip to [0,1]
cosine_decay = 0.5 * (1.0 + tf.cos(tf.constant(math.pi) * decay_factor))
decay_lr = self.min_lr + (self.peak_lr - self.min_lr) * cosine_decay
# Choose between warmup and decay
final_lr = tf.where(step < self.warmup_steps, warmup_lr, decay_lr)
# Ensure learning rate is valid
final_lr = tf.maximum(self.min_lr, final_lr)
final_lr = tf.where(tf.math.is_finite(final_lr), final_lr, self.min_lr)
return final_lr
def get_config(self):
return {
"total_steps": self.total_steps,
"peak_lr": self.peak_lr,
"warmup_steps": self.warmup_steps,
}
return CustomSchedule(total_steps, peak_lr, warmup_steps)
def _cosine_similarity(self, emb1: np.ndarray, emb2: np.ndarray) -> np.ndarray:
"""Compute cosine similarity between two numpy arrays."""
normalized_emb1 = emb1 / np.linalg.norm(emb1, axis=1, keepdims=True)
normalized_emb2 = emb2 / np.linalg.norm(emb2, axis=1, keepdims=True)
return np.dot(normalized_emb1, normalized_emb2.T)
def chat(
self,
query: str,
conversation_history: Optional[List[Tuple[str, str]]] = None,
quality_checker: Optional['ResponseQualityChecker'] = None,
top_k: int = 5,
) -> Tuple[str, List[Tuple[str, float]], Dict[str, Any]]:
"""
Example chat method that always uses cross-encoder re-ranking
if self.reranker is available.
"""
@self.run_on_device
def get_response(self_arg, query_arg): # Add parameters that match decorator's expectations
# 1) Build conversation context string
conversation_str = self_arg._build_conversation_context(query_arg, conversation_history)
# 2) Retrieve + cross-encoder re-rank
results = self_arg.retrieve_responses_cross_encoder(
query=conversation_str,
top_k=top_k,
reranker=self_arg.reranker,
summarizer=self_arg.summarizer,
summarize_threshold=512
)
# 3) Handle empty or confidence
if not results:
return (
"I'm sorry, but I couldn't find a relevant response.",
[],
{}
)
if quality_checker:
metrics = quality_checker.check_response_quality(query_arg, results)
if not metrics.get('is_confident', False):
return (
"I need more information to provide a good answer. Could you please clarify?",
results,
metrics
)
return results[0][0], results, metrics
return results[0][0], results, {}
return get_response(self, query)
def _build_conversation_context(
self,
query: str,
conversation_history: Optional[List[Tuple[str, str]]]
) -> str:
"""Build conversation context with better memory management."""
if not conversation_history:
return f"{self.special_tokens['user']} {query}"
conversation_parts = []
for user_txt, assistant_txt in conversation_history:
conversation_parts.extend([
f"{self.special_tokens['user']} {user_txt}",
f"{self.special_tokens['assistant']} {assistant_txt}"
])
conversation_parts.append(f"{self.special_tokens['user']} {query}")
return "\n".join(conversation_parts)
class TFDataPipeline:
def __init__(
self,
embedding_batch_size,
tokenizer,
encoder,
index,
response_pool,
max_length: int,
neg_samples: int,
):
self.embedding_batch_size = embedding_batch_size
self.tokenizer = tokenizer
self.encoder = encoder
self.index = index # CPU version of the index
self.response_pool = response_pool
self.max_length = max_length
self.neg_samples = neg_samples
self.embedding_batch_size = 16 if len(response_pool) < 100 else 64
self.search_batch_size = 8 if len(response_pool) < 100 else 32
self.max_batch_size = 32 if len(response_pool) < 100 else 256
self.memory_monitor = GPUMemoryMonitor()
self.max_retries = 3
# In-memory cache for embeddings
self.query_embeddings_cache = {}
def _extract_pairs_from_dialogue(self, dialogue: dict) -> List[Tuple[str, str]]:
"""Extract query-response pairs from a dialogue."""
pairs = []
turns = dialogue.get('turns', [])
for i in range(len(turns) - 1):
current_turn = turns[i]
next_turn = turns[i+1]
if (current_turn.get('speaker') == 'user' and
next_turn.get('speaker') == 'assistant' and
'text' in current_turn and
'text' in next_turn):
query = current_turn['text'].strip()
positive = next_turn['text'].strip()
pairs.append((query, positive))
return pairs
def estimate_total_pairs(self, dialogues: List[dict]) -> int:
"""Estimate total number of training pairs including hard negatives."""
base_pairs = sum(
len([
1 for i in range(len(d.get('turns', [])) - 1)
if (d['turns'][i].get('speaker') == 'user' and
d['turns'][i+1].get('speaker') == 'assistant')
])
for d in dialogues
)
# Account for hard negatives
return base_pairs * (1 + self.neg_samples)
def _find_hard_negatives_batch(self, queries: List[str], positives: List[str]) -> List[List[str]]:
"""Find hard negatives for a batch of queries with error handling and retries."""
retry_count = 0
total_responses = len(self.response_pool)
while retry_count < self.max_retries:
try:
query_embeddings = np.vstack([
self.query_embeddings_cache[q] for q in queries
]).astype(np.float32)
query_embeddings = np.ascontiguousarray(query_embeddings)
faiss.normalize_L2(query_embeddings)
k = 1 # TODO: try higher k for better results
#logger.debug(f"Searching with k={k} among {total_responses} responses")
distances, indices = self.index.search(query_embeddings, k)
all_negatives = []
for query_indices, query, positive in zip(indices, queries, positives):
negatives = []
positive_strip = positive.strip()
seen = {positive_strip}
for idx in query_indices:
if idx >= 0 and idx < total_responses:
candidate = self.response_pool[idx].strip()
if candidate and candidate not in seen:
seen.add(candidate)
negatives.append(candidate)
if len(negatives) >= self.neg_samples:
break
# Pad with a special empty negative if necessary
while len(negatives) < self.neg_samples:
negatives.append("<EMPTY_NEGATIVE>") # Use a special token
all_negatives.append(negatives)
return all_negatives
except Exception as e:
retry_count += 1
logger.warning(f"Hard negative search attempt {retry_count} failed: {e}")
if retry_count == self.max_retries:
logger.error("Max retries reached for hard negative search")
return [["<EMPTY_NEGATIVE>"] * self.neg_samples for _ in queries] # Return empty negatives for all queries
gc.collect()
if tf.config.list_physical_devices('GPU'):
tf.keras.backend.clear_session()
def _tokenize_negatives_tf(self, negatives):
"""Tokenizes negatives using tf.py_function."""
# Handle the case where negatives is an empty tensor
if tf.size(negatives) == 0:
return tf.zeros([0, self.neg_samples, self.max_length], dtype=tf.int32)
# Convert EagerTensor to a list of strings
negatives_list = []
for neg_list in negatives.numpy():
decoded_negs = [neg.decode("utf-8") for neg in neg_list if neg] # Filter out empty strings
negatives_list.append(decoded_negs)
# Flatten the list of lists
flattened_negatives = [neg for sublist in negatives_list for neg in sublist]
# Tokenize the flattened negatives
if flattened_negatives:
n_tokens = self.tokenizer(
flattened_negatives,
padding='max_length',
truncation=True,
max_length=self.max_length,
return_tensors='tf'
)
# Reshape the tokens
n_tokens_reshaped = tf.reshape(n_tokens['input_ids'], [-1, self.neg_samples, self.max_length])
return n_tokens_reshaped
else:
return tf.zeros([0, self.neg_samples, self.max_length], dtype=tf.int32)
def _compute_embeddings(self, queries: List[str]) -> None:
"""Computes and caches embeddings for new queries."""
new_queries = [q for q in queries if q not in self.query_embeddings_cache]
if not new_queries:
return # All queries already cached
new_embeddings = []
for i in range(0, len(new_queries), self.embedding_batch_size):
batch_queries = new_queries[i:i + self.embedding_batch_size]
encoded = self.tokenizer(
batch_queries,
padding=True,
truncation=True,
max_length=self.max_length,
return_tensors='tf'
)
# Compute embeddings on CPU
with tf.device('/CPU:0'):
batch_embeddings = self.encoder(encoded['input_ids'], training=False).numpy()
new_embeddings.extend(batch_embeddings)
# Update cache with new embeddings
for query, emb in zip(new_queries, new_embeddings):
self.query_embeddings_cache[query] = emb
def data_generator(self, dialogues: List[dict]) -> Generator[Tuple[str, str, List[str]], None, None]:
"""
Generates training examples: (query, positive, hard_negatives).
Wrapped the outer loop with tqdm for progress tracking.
"""
total_dialogues = len(dialogues)
logger.debug(f"Total dialogues to process: {total_dialogues}")
# Initialize tqdm progress bar
with tqdm(total=total_dialogues, desc="Processing Dialogues", unit="dialogue") as pbar:
for dialogue in dialogues:
pairs = self._extract_pairs_from_dialogue(dialogue)
for query, positive in pairs:
# Ensure embeddings are computed, find hard negatives, etc.
self._compute_embeddings([query])
hard_negatives = self._find_hard_negatives_batch([query], [positive])[0]
yield (query, positive, hard_negatives)
pbar.update(1)
def _prepare_batch(self, queries: tf.Tensor, positives: tf.Tensor, negatives: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]:
"""Prepares a batch of data for training."""
# Convert EagerTensors to lists of strings
queries_list = [query.decode("utf-8") for query in queries.numpy()]
positives_list = [pos.decode("utf-8") for pos in positives.numpy()]
# Tokenize queries and positives
q_tokens = self.tokenizer(queries_list, padding='max_length', truncation=True, max_length=self.max_length, return_tensors='tf')
p_tokens = self.tokenizer(positives_list, padding='max_length', truncation=True, max_length=self.max_length, return_tensors='tf')
# Decode negatives and ensure they are lists of strings
negatives_list = []
for neg_list in negatives.numpy():
decoded_negs = [neg.decode("utf-8") for neg in neg_list if neg] # Filter out empty strings
negatives_list.append(decoded_negs)
# Flatten negatives for tokenization if there are any valid negatives
flattened_negatives = [neg for sublist in negatives_list for neg in sublist if neg]
# Tokenize negatives if there are any
n_tokens_reshaped = None
if flattened_negatives:
n_tokens = self.tokenizer(flattened_negatives, padding='max_length', truncation=True, max_length=self.max_length, return_tensors='tf')
# Reshape n_tokens to match the expected shape based on the number of negatives per query
# This part may need adjustment if the number of negatives varies per query
n_tokens_reshaped = tf.reshape(n_tokens['input_ids'], [len(queries_list), -1, self.max_length])
else:
# Create a placeholder tensor for the case where there are no negatives
n_tokens_reshaped = tf.zeros([len(queries_list), 0, self.max_length], dtype=tf.int32)
# Ensure n_tokens_reshaped has a consistent shape even when there are no negatives
# Adjust shape to [batch_size, num_neg_samples, max_length]
if n_tokens_reshaped.shape[1] != self.neg_samples:
# Pad or truncate the second dimension to match neg_samples
padding = tf.zeros([len(queries_list), tf.maximum(0, self.neg_samples - n_tokens_reshaped.shape[1]), self.max_length], dtype=tf.int32)
n_tokens_reshaped = tf.concat([n_tokens_reshaped, padding], axis=1)
n_tokens_reshaped = n_tokens_reshaped[:, :self.neg_samples, :]
# Concatenate the positive and negative examples along the 'neg_samples' dimension
combined_p_n_tokens = tf.concat([tf.expand_dims(p_tokens['input_ids'], axis=1), n_tokens_reshaped], axis=1)
return q_tokens['input_ids'], combined_p_n_tokens
def get_tf_dataset(self, dialogues: List[dict], batch_size: int) -> tf.data.Dataset:
"""
Creates a tf.data.Dataset for streaming training that yields
(input_ids_query, input_ids_positive, input_ids_negatives).
"""
# 1) Start with a generator dataset
dataset = tf.data.Dataset.from_generator(
lambda: self.data_generator(dialogues),
output_signature=(
tf.TensorSpec(shape=(), dtype=tf.string), # Query (single string)
tf.TensorSpec(shape=(), dtype=tf.string), # Positive (single string)
tf.TensorSpec(shape=(None,), dtype=tf.string) # Hard Negatives (list of strings)
)
)
# 2) Batch the raw strings
dataset = dataset.batch(batch_size)
# 3) Now map them through a tokenize step (via py_function)
dataset = dataset.map(
lambda q, p, n: self._tokenize_triple(q, p, n),
num_parallel_calls=1 #tf.data.AUTOTUNE
)
dataset = dataset.prefetch(tf.data.AUTOTUNE)
return dataset
def _tokenize_triple(
self,
q: tf.Tensor,
p: tf.Tensor,
n: tf.Tensor
) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]:
"""
Wraps a Python function via tf.py_function to convert tf.Tensors of strings
-> Python lists of strings -> HF tokenizer -> Tensors of IDs.
q is shape [batch_size], p is shape [batch_size],
n is shape [batch_size, neg_samples] (i.e., each row is a list of negatives).
"""
# Use tf.py_function with limited parallelism
q_ids, p_ids, n_ids = tf.py_function(
func=self._tokenize_triple_py,
inp=[q, p, n, tf.constant(self.max_length), tf.constant(self.neg_samples)],
Tout=[tf.int32, tf.int32, tf.int32]
)
# Manually set shape information
q_ids.set_shape([None, self.max_length]) # [batch_size, max_length]
p_ids.set_shape([None, self.max_length]) # [batch_size, max_length]
n_ids.set_shape([None, self.neg_samples, self.max_length]) # [batch_size, neg_samples, max_length]
return q_ids, p_ids, n_ids
# def _tokenize_triple(
# self,
# q: tf.Tensor,
# p: tf.Tensor,
# n: tf.Tensor
# ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]:
# """
# Wraps a Python function via tf.py_function to convert tf.Tensors of strings
# -> Python lists of strings -> HF tokenizer -> Tensors of IDs.
# q is shape [batch_size], p is shape [batch_size],
# n is shape [batch_size, None] (i.e. each row is a variable number of negatives).
# """
# # Use tf.py_function
# # We pass in self.max_length as well, so we can do it in one shot.
# q_ids, p_ids, n_ids = tf.py_function(
# func=self._tokenize_triple_py,
# inp=[q, p, n, tf.constant(self.max_length), tf.constant(self.neg_samples)],
# Tout=[tf.int32, tf.int32, tf.int32]
# )
# # We must manually set shape information so that TF data pipeline knows the dimensions
# q_ids.set_shape([None, self.max_length]) # [batch_size, max_length]
# p_ids.set_shape([None, self.max_length]) # [batch_size, max_length]
# n_ids.set_shape([None, self.neg_samples, self.max_length])
# # The negative dimension is set to `self.neg_samples` for consistency.
# return q_ids, p_ids, n_ids
def _tokenize_triple_py(
self,
q: tf.Tensor,
p: tf.Tensor,
n: tf.Tensor,
max_len: tf.Tensor,
neg_samples: tf.Tensor
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Python function that:
- Decodes each tf.string Tensor to a Python list of strings
- Calls the HF tokenizer
- Reshapes negatives
- Returns np.array of int32s for (q_ids, p_ids, n_ids).
q: shape [batch_size], p: shape [batch_size]
n: shape [batch_size, neg_samples]
max_len: scalar int
neg_samples: scalar int
"""
max_len = int(max_len.numpy()) # Convert to Python int
neg_samples = int(neg_samples.numpy())
# 1) Convert Tensors -> Python lists of strings
q_list = [q_i.decode("utf-8") for q_i in q.numpy()] # shape [batch_size]
p_list = [p_i.decode("utf-8") for p_i in p.numpy()] # shape [batch_size]
# shape [batch_size, neg_samples], decode each row
n_list = []
for row in n.numpy():
# row is shape [neg_samples], each is a tf.string
decoded = [neg.decode("utf-8") for neg in row]
n_list.append(decoded)
# 2) Tokenize queries & positives
q_enc = self.tokenizer(
q_list,
padding="max_length",
truncation=True,
max_length=max_len,
return_tensors="np"
)
p_enc = self.tokenizer(
p_list,
padding="max_length",
truncation=True,
max_length=max_len,
return_tensors="np"
)
# 3) Tokenize negatives
# Flatten [batch_size, neg_samples] -> single list
flattened_negatives = [neg for row in n_list for neg in row]
if len(flattened_negatives) == 0:
# No negatives at all: return a zero array
n_ids = np.zeros((len(q_list), neg_samples, max_len), dtype=np.int32)
else:
n_enc = self.tokenizer(
flattened_negatives,
padding="max_length",
truncation=True,
max_length=max_len,
return_tensors="np"
)
# shape [batch_size * neg_samples, max_len]
n_input_ids = n_enc["input_ids"]
# We want to reshape to [batch_size, neg_samples, max_len]
# Handle cases where there might be fewer negatives
batch_size = len(q_list)
n_ids_list = []
for i in range(batch_size):
start_idx = i * neg_samples
end_idx = start_idx + neg_samples
row_negs = n_input_ids[start_idx:end_idx]
# If fewer negatives, pad with zeros
if row_negs.shape[0] < neg_samples:
deficit = neg_samples - row_negs.shape[0]
pad_arr = np.zeros((deficit, max_len), dtype=np.int32)
row_negs = np.concatenate([row_negs, pad_arr], axis=0)
n_ids_list.append(row_negs)
# stack them -> shape [batch_size, neg_samples, max_len]
n_ids = np.stack(n_ids_list, axis=0)
# 4) Return as np.int32 arrays
q_ids = q_enc["input_ids"].astype(np.int32) # shape [batch_size, max_len]
p_ids = p_enc["input_ids"].astype(np.int32) # shape [batch_size, max_len]
n_ids = n_ids.astype(np.int32) # shape [batch_size, neg_samples, max_len]
return q_ids, p_ids, n_ids
# def _tokenize_triple_py(
# self,
# q: tf.Tensor,
# p: tf.Tensor,
# n: tf.Tensor,
# max_len: tf.Tensor,
# neg_samples: tf.Tensor
# ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
# """
# Python function that:
# - Decodes each tf.string Tensor to a Python list of strings
# - Calls the HF tokenizer
# - Reshapes negatives
# - Returns np.array of int32s for (q_ids, p_ids, n_ids).
# q: shape [batch_size], p: shape [batch_size]
# n: shape [batch_size, None]
# max_len: scalar int
# neg_samples: scalar int
# """
# max_len = int(max_len.numpy()) # convert to python int
# neg_samples = int(neg_samples.numpy())
# # 1) Convert Tensors -> Python lists of strings
# q_list = [q_i.decode("utf-8") for q_i in q.numpy()] # shape [batch_size]
# p_list = [p_i.decode("utf-8") for p_i in p.numpy()] # shape [batch_size]
# # shape [batch_size, variable_negatives], decode each row
# n_list = []
# for row in n.numpy():
# # row is shape [N], each is a tf.string
# decoded = [neg.decode("utf-8") for neg in row]
# n_list.append(decoded)
# # 2) Tokenize queries & positives
# q_enc = self.tokenizer(
# q_list,
# padding="max_length",
# truncation=True,
# max_length=max_len,
# return_tensors="np" # you can do return_tensors="tf", but "np" is often simpler here
# )
# p_enc = self.tokenizer(
# p_list,
# padding="max_length",
# truncation=True,
# max_length=max_len,
# return_tensors="np"
# )
# # 3) Tokenize negatives
# # Flatten [batch_size, variable_negatives] -> single list
# flattened_negatives = [neg for row in n_list for neg in row]
# if len(flattened_negatives) == 0:
# # No negatives at all: return a zero array
# n_ids = np.zeros((len(q_list), neg_samples, max_len), dtype=np.int32)
# else:
# n_enc = self.tokenizer(
# flattened_negatives,
# padding="max_length",
# truncation=True,
# max_length=max_len,
# return_tensors="np"
# )
# # shape [batch_size * total_negatives, max_len]
# n_input_ids = n_enc["input_ids"]
# # We want to reshape to [batch_size, neg_samples, max_len].
# # If each row truly has exactly `neg_samples` (or fewer), we can do:
# # n_input_ids = n_input_ids.reshape(len(q_list), neg_samples, max_len)
# # But if the rows have variable # of negatives, we must clamp or pad.
# # For simplicity, let's just "take first neg_samples" per row
# # and pad if fewer.
# # We'll do it row by row:
# batch_size = len(q_list)
# row_offsets = 0
# n_ids_list = []
# for row_idx in range(batch_size):
# row_negs = n_list[row_idx]
# row_count = len(row_negs)
# # slice from the flattened array
# row_slice = n_input_ids[row_offsets:row_offsets + row_count]
# row_offsets += row_count
# # Now pick out up to neg_samples
# row_slice = row_slice[:neg_samples]
# # If fewer than neg_samples, pad
# if row_slice.shape[0] < neg_samples:
# deficit = neg_samples - row_slice.shape[0]
# pad_arr = np.zeros((deficit, max_len), dtype=np.int32)
# row_slice = np.concatenate([row_slice, pad_arr], axis=0)
# # row_slice is now shape [neg_samples, max_len]
# n_ids_list.append(row_slice)
# # stack them -> shape [batch_size, neg_samples, max_len]
# n_ids = np.stack(n_ids_list, axis=0)
# # 4) Return as np.int32 arrays (tokenizer should already return int32,
# # but we can cast to be sure)
# q_ids = q_enc["input_ids"].astype(np.int32) # shape [batch_size, max_len]
# p_ids = p_enc["input_ids"].astype(np.int32) # shape [batch_size, max_len]
# n_ids = n_ids.astype(np.int32) # shape [batch_size, neg_samples, max_len]
# return q_ids, p_ids, n_ids
|