File size: 8,735 Bytes
e5be70f
7a0020b
e5be70f
7a0020b
e5be70f
7a0020b
 
 
 
 
 
 
e5be70f
 
 
 
 
 
7a0020b
 
 
 
e5be70f
 
 
 
 
 
 
 
 
 
 
 
 
 
7a0020b
 
e5be70f
 
7a0020b
 
 
 
e5be70f
 
 
 
 
7a0020b
 
 
 
 
 
 
e5be70f
7a0020b
e5be70f
7a0020b
 
 
 
e5be70f
7a0020b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5be70f
 
 
7a0020b
 
 
e5be70f
 
7a0020b
e5be70f
7a0020b
 
 
 
 
e5be70f
 
7a0020b
 
 
 
 
 
 
 
 
 
 
 
e5be70f
7a0020b
 
 
e5be70f
 
7a0020b
e5be70f
7a0020b
e5be70f
 
 
7a0020b
e5be70f
7a0020b
 
 
 
 
e5be70f
 
 
7a0020b
 
e5be70f
 
7a0020b
 
 
e5be70f
 
 
 
 
7a0020b
 
e5be70f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a0020b
 
 
e5be70f
7a0020b
e5be70f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a0020b
 
 
e5be70f
7a0020b
e5be70f
 
 
 
 
7a0020b
 
 
 
 
 
e5be70f
7a0020b
 
 
 
e5be70f
7a0020b
 
 
e5be70f
 
7a0020b
 
e5be70f
7a0020b
 
 
 
 
 
e5be70f
7a0020b
 
 
 
e5be70f
7a0020b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os
import re
import json
from pathlib import Path
from typing import List, Dict, Optional, Any
from dataclasses import dataclass, field

@dataclass
class TaskmasterDialogue:
    conversation_id: str
    instruction_id: Optional[str]
    scenario: Optional[str]
    domain: Optional[str]
    turns: List[Dict[str, Any]]
    original_metadata: Dict[str, Any] = field(default_factory=dict)
    
    def __str__(self):
        return f"TaskmasterDialogue(conversation_id={self.conversation_id}, turns={len(self.turns)} turns)"
    
    def validate(self) -> bool:
        return bool(self.conversation_id and isinstance(self.turns, list))

class PipelineConfig:
    """
    Example config structure. Adjust to your real config usage.
    """
    def __init__(
        self, 
        debug: bool = True,
        min_turns: int = 2, 
        min_user_words: int = 3
    ):
        self.debug = debug
        self.min_turns = min_turns
        self.min_user_words = min_user_words

class TaskmasterProcessor:
    """
    Loads Taskmaster-1 dialogues, extracts domain from scenario,
    cleans + filters them, and outputs a pipeline-friendly format.
    """
    def __init__(self, config: PipelineConfig):
        self.config = config
    
    def load_taskmaster_dataset(
        self, 
        base_dir: str, 
        max_examples: Optional[int] = None
    ) -> List[TaskmasterDialogue]:
        """
        Load and parse Taskmaster JSON for self-dialogs & woz-dialogs (Taskmaster-1).
        Combines scenario text + conversation utterances to detect domain more robustly.
        """
        required_files = {
            "self-dialogs": "self-dialogs.json",
            "woz-dialogs": "woz-dialogs.json",
            "ontology": "ontology.json",  # we might not actively use it, but let's expect it
        }
        # 1) Check for missing
        missing = [k for k, v in required_files.items() if not Path(base_dir, v).exists()]
        if missing:
            raise FileNotFoundError(f"Missing Taskmaster files: {missing}")
        
        # 2) Optionally load ontology
        ontology_path = Path(base_dir, required_files["ontology"])
        with open(ontology_path, 'r', encoding='utf-8') as f:
            ontology = json.load(f)
            if self.config.debug:
                print(f"[TaskmasterProcessor] Loaded ontology with {len(ontology.keys())} top-level keys (unused).")
        
        dialogues: List[TaskmasterDialogue] = []
        
        file_keys = ["self-dialogs", "woz-dialogs"]
        for file_key in file_keys:
            file_path = Path(base_dir, required_files[file_key])
            with open(file_path, 'r', encoding='utf-8') as f:
                raw_data = json.load(f)
            
            for d in raw_data:
                conversation_id = d.get("conversation_id", "")
                instruction_id = d.get("instruction_id", None)
                scenario_text = d.get("scenario", "")
                
                # 3) Convert raw utterances
                utterances = d.get("utterances", [])
                turns = self._process_utterances(utterances)

                # 4) Domain detection
                domain = self._extract_domain(scenario_text, turns)

                # 5) Build the structured object
                new_dlg = TaskmasterDialogue(
                    conversation_id=conversation_id,
                    instruction_id=instruction_id,
                    scenario=scenario_text,
                    domain=domain,
                    turns=turns,
                    original_metadata={}
                )
                dialogues.append(new_dlg)
                
                if max_examples and len(dialogues) >= max_examples:
                    break
        
        if self.config.debug:
            print(f"[TaskmasterProcessor] Loaded {len(dialogues)} total dialogues from Taskmaster-1.")
        return dialogues
    
    def _extract_domain(self, scenario: str, turns: List[Dict[str, str]]) -> str:
        """
        Combine scenario text + all turn texts to detect domain more robustly.
        """
        combined_text = scenario.lower()
        for turn in turns:
            txt = turn.get('text', '').lower()
            combined_text += " " + txt

        # Expanded domain patterns
        domain_patterns = {
            'restaurant': r'\b(restaurant|dining|food|reservation|table|menu|cuisine|eat|hungry)\b',
            'movie': r'\b(movie|cinema|film|ticket|showtime|theater|flick|screening)\b',
            'ride_share': r'\b(ride|taxi|uber|lyft|car\s?service|pickup|dropoff|driver)\b',
            'coffee': r'\b(coffee|café|cafe|starbucks|espresso|latte|mocha|americano)\b',
            'pizza': r'\b(pizza|delivery|order\s?food|pepperoni|topping|pizzeria|slice)\b',
            'auto': r'\b(car|vehicle|repair|maintenance|mechanic|oil\s?change)\b'
        }

        for dom, pattern in domain_patterns.items():
            if re.search(pattern, combined_text):
                # Optional: print if debug
                if self.config.debug:
                    print(f"Matched domain: {dom} in scenario/turns")
                return dom
        
        if self.config.debug:
            print("No domain match, returning 'other'")
        return 'other'
    
    def _process_utterances(self, utterances: List[Dict[str, Any]]) -> List[Dict[str, str]]:
        """
        Convert raw utterances to a cleaned list of (speaker, text).
        Skip or remove lines that are numeric, too short, or empty.
        """
        cleaned_turns = []
        for utt in utterances:
            speaker = 'assistant' if utt.get('speaker') == 'ASSISTANT' else 'user'
            raw_text = utt.get('text', '').strip()
            
            # 1) Optional text cleaning
            text = self._clean_text(raw_text)

            # 2) Skip blank or numeric lines
            if not text:
                continue
            if self._is_numeric_line(text):
                continue

            # 3) If it's extremely short, skip. 
            # (For example, "ok" or "yes" might be 1-2 words.)
            if len(text.split()) < 2:
                # Optionally keep "ok" or "yes" if you'd like, but let's skip them to keep quality up
                continue

            # 4) Append
            cleaned_turns.append({
                'speaker': speaker,
                'text': text
            })
        return cleaned_turns
    
    def _clean_text(self, text: str) -> str:
        """
        Basic text normalization: remove repeated punctuation, handle weird spacing, etc.
        Adjust to your needs.
        """
        # Example: collapse multiple spaces
        text = re.sub(r'\s+', ' ', text)
        # Example: remove trailing punctuation or repeated punctuation
        # e.g. "Sure!!!" => "Sure!"
        text = re.sub(r'([!?.,])\1+', r'\1', text)
        return text.strip()

    def _is_numeric_line(self, text: str) -> bool:
        """
        Return True if line is purely digits/punctuation/spaces, 
        e.g. "4 3 13", "12345", "3.14". Adjust as needed.
        """
        pattern = r'^[\s]*[\d]+([\s\d.,]+)*[\s]*$'
        return bool(re.match(pattern, text))

    def filter_and_convert(self, dialogues: List[TaskmasterDialogue]) -> List[Dict]:
        """
        Filter out dialogues that don't meet min turns / min user words,
        then convert them to final pipeline format:
        
            {
              "dialogue_id": "...",
              "domain": "...",
              "turns": [ {"speaker": "user", "text": "..."}, ... ]
            }
        """
        results = []
        for dlg in dialogues:
            if not dlg.validate():
                continue
            
            # If after cleaning, we have too few turns, skip
            if len(dlg.turns) < self.config.min_turns:
                continue
            
            # Check user-turn min words
            # E.g. user must have >= 3 words
            keep = True
            for turn in dlg.turns:
                if turn['speaker'] == 'user':
                    words_count = len(turn['text'].split())
                    if words_count < self.config.min_user_words:
                        keep = False
                        break
            
            if not keep:
                continue
            
            pipeline_dlg = {
                'dialogue_id': dlg.conversation_id,
                'domain': dlg.domain,
                'turns': dlg.turns  # already cleaned
            }
            results.append(pipeline_dlg)
        
        if self.config.debug:
            print(f"[TaskmasterProcessor] Filtered down to {len(results)} dialogues after cleaning.")
        return results