File size: 45,227 Bytes
5b413d1
f7b283c
 
74af405
f7b283c
 
 
 
 
 
9decf80
74af405
f7b283c
 
 
9decf80
 
f7b283c
9decf80
 
 
f7b283c
 
 
 
 
 
2183656
f7b283c
 
 
 
 
 
 
 
 
 
 
74af405
 
 
 
 
f7b283c
74af405
f7b283c
74af405
f7b283c
 
 
74af405
f7b283c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b413d1
f7b283c
74af405
 
5b413d1
f7b283c
 
 
 
 
 
 
 
74af405
 
f7b283c
 
74af405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7b283c
 
 
 
5b413d1
f7b283c
 
5b413d1
 
 
 
f7b283c
 
 
 
 
 
 
 
 
 
 
 
 
 
74af405
 
 
 
 
 
9b5daff
5b413d1
74af405
 
f7b283c
 
74af405
9b5daff
f7b283c
5b413d1
74af405
 
5b413d1
 
9decf80
74af405
5b413d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7b283c
5b413d1
 
 
 
 
 
 
 
f7b283c
 
 
 
 
 
 
5b413d1
74af405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b413d1
 
 
 
 
 
 
74af405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b413d1
 
 
 
f7b283c
 
 
 
 
5b413d1
f7b283c
5b413d1
9decf80
5b413d1
 
9decf80
5b413d1
 
 
 
 
 
 
 
 
 
9decf80
5b413d1
 
 
 
 
 
9decf80
 
5b413d1
9decf80
5b413d1
 
 
f7b283c
5b413d1
9decf80
5b413d1
 
 
 
 
 
9decf80
5b413d1
 
 
9decf80
5b413d1
 
9decf80
5b413d1
 
 
 
 
9decf80
5b413d1
 
 
9decf80
5b413d1
 
 
9decf80
5b413d1
 
 
 
 
9decf80
5b413d1
 
 
 
 
9decf80
5b413d1
9decf80
5b413d1
 
 
 
 
 
9decf80
5b413d1
9decf80
5b413d1
 
 
 
 
 
 
9decf80
5b413d1
9decf80
5b413d1
 
 
 
 
f7b283c
5b413d1
 
 
f7b283c
5b413d1
 
f7b283c
5b413d1
 
f7b283c
5b413d1
f7b283c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b413d1
f7b283c
 
 
 
 
 
 
 
 
 
 
 
 
5b413d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7b283c
 
 
5b413d1
9b5daff
 
 
5b413d1
 
9decf80
f7b283c
 
 
 
 
5b413d1
f7b283c
 
 
 
5b413d1
 
f7b283c
 
 
 
5b413d1
 
 
 
 
f7b283c
5b413d1
 
 
f7b283c
5b413d1
 
f7b283c
5b413d1
 
f7b283c
5b413d1
 
 
 
 
 
 
f7b283c
5b413d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7b283c
5b413d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7b283c
5b413d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7b283c
5b413d1
f7b283c
f5346f7
f7b283c
 
 
 
 
5b413d1
f7b283c
 
 
5b413d1
 
9decf80
f5346f7
 
9b5daff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b413d1
 
9b5daff
f5346f7
 
 
 
2183656
f5346f7
 
 
f7b283c
5b413d1
f7b283c
9decf80
2183656
9decf80
 
 
 
 
f7b283c
 
 
 
 
 
 
 
 
 
 
 
 
9decf80
5b413d1
 
 
 
 
 
 
f7b283c
5b413d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9decf80
f7b283c
 
 
 
 
 
 
 
 
f5346f7
9b5daff
f5346f7
 
 
5b413d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5346f7
5b413d1
 
f5346f7
 
2183656
5b413d1
 
 
 
 
 
 
 
 
 
 
9decf80
f7b283c
 
 
5b413d1
2183656
 
 
9decf80
2183656
 
 
 
 
 
 
 
 
5b413d1
 
 
 
 
 
 
 
 
 
 
 
 
2183656
 
 
 
 
5b413d1
 
 
 
9decf80
2183656
 
 
 
 
9decf80
2183656
 
 
 
5b413d1
 
2183656
 
 
f5346f7
2183656
 
f7b283c
2183656
 
f7b283c
2183656
 
f7b283c
2183656
 
 
f7b283c
9decf80
2183656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5346f7
2183656
 
f7b283c
2183656
 
9decf80
2183656
 
9decf80
2183656
 
 
 
9decf80
2183656
 
 
 
 
9decf80
2183656
 
5b413d1
 
 
 
 
9decf80
2183656
 
 
9decf80
2183656
 
 
 
9decf80
5b413d1
2183656
f7b283c
5b413d1
 
 
 
 
2183656
 
 
 
 
 
 
 
 
 
 
f7b283c
f5346f7
 
9decf80
2183656
 
 
 
f5346f7
2183656
 
f5346f7
2183656
9decf80
2183656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9decf80
2183656
 
9decf80
2183656
 
5b413d1
9decf80
5b413d1
 
 
 
 
 
 
 
9decf80
5b413d1
 
9decf80
 
2183656
 
 
 
f5346f7
2183656
 
f5346f7
2183656
9decf80
 
 
2183656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7b283c
9decf80
2183656
 
9decf80
2183656
 
9decf80
f7b283c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
import os
from transformers import TFAutoModel, AutoTokenizer
import tensorflow as tf
from typing import List, Tuple, Dict, Optional, Union, Any
import math
from dataclasses import dataclass
import json
from pathlib import Path
import datetime       
import faiss
import gc
from tf_data_pipeline import TFDataPipeline
from response_quality_checker import ResponseQualityChecker
from cross_encoder_reranker import CrossEncoderReranker
from conversation_summarizer import DeviceAwareModel, Summarizer
from gpu_monitor import GPUMemoryMonitor
import absl.logging
from logger_config import config_logger
from tqdm.auto import tqdm

absl.logging.set_verbosity(absl.logging.WARNING)
logger = config_logger(__name__)

@dataclass
class ChatbotConfig:
    """Configuration for the RetrievalChatbot."""
    max_context_token_limit: int = 512
    embedding_dim: int = 768
    encoder_units: int = 256
    num_attention_heads: int = 8
    dropout_rate: float = 0.2
    l2_reg_weight: float = 0.001
    learning_rate: float = 0.001
    min_text_length: int = 3
    max_context_turns: int = 5
    warmup_steps: int = 200
    pretrained_model: str = 'distilbert-base-uncased'
    dtype: str = 'float32'
    freeze_embeddings: bool = False
    embedding_batch_size: int = 64
    search_batch_size: int = 64
    max_batch_size: int = 64
    neg_samples: int = 3
    max_retries: int = 3

    def to_dict(self) -> Dict:
        """Convert config to dictionary."""
        return {k: (str(v) if isinstance(v, Path) else v) 
                for k, v in self.__dict__.items()}

    @classmethod
    def from_dict(cls, config_dict: Dict) -> 'ChatbotConfig':
        """Create config from dictionary."""
        return cls(**{k: v for k, v in config_dict.items() 
                     if k in cls.__dataclass_fields__})

class EncoderModel(tf.keras.Model):
    """Dual encoder model with pretrained embeddings."""
    def __init__(
        self,
        config: ChatbotConfig,
        name: str = "encoder",
        **kwargs
    ):
        super().__init__(name=name, **kwargs)
        self.config = config

        # Load pretrained model and freeze layers based on config
        self.pretrained = TFAutoModel.from_pretrained(config.pretrained_model)
        self._freeze_layers()
        
        # Add Pooling layer (Global Average Pooling), Projection layer, Dropout, and Normalization
        self.pooler = tf.keras.layers.GlobalAveragePooling1D()
        self.projection = tf.keras.layers.Dense(
            config.embedding_dim,
            activation='tanh',
            name="projection"
        )
        self.dropout = tf.keras.layers.Dropout(config.dropout_rate)
        self.normalize = tf.keras.layers.Lambda(
            lambda x: tf.nn.l2_normalize(x, axis=1),
            name="l2_normalize"
        )

    def _freeze_layers(self):
        """Freeze layers of the pretrained model based on configuration."""
        if self.config.freeze_embeddings:
            self.pretrained.trainable = False
            logger.info("All pretrained layers frozen.")
        else:
            # Freeze only the first 'n' transformer layers
            for i, layer in enumerate(self.pretrained.layers):
                if isinstance(layer, tf.keras.layers.Layer):
                    if hasattr(layer, 'trainable'):
                        # Freeze the first transformer block
                        if i < 1:
                            layer.trainable = False
                            logger.info(f"Layer {i} frozen.")
                        else:
                            layer.trainable = True
                            
    def call(self, inputs: tf.Tensor, training: bool = False) -> tf.Tensor:
        """Forward pass."""
        # Get pretrained embeddings
        pretrained_outputs = self.pretrained(inputs, training=training)
        x = pretrained_outputs.last_hidden_state # Shape: [batch_size, seq_len, embedding_dim]

        # Apply pooling, projection, dropout, and normalization
        x = self.pooler(x)                      # Shape: [batch_size, 768]
        x = self.projection(x)                  # Shape: [batch_size, 768]
        x = self.dropout(x, training=training)
        x = self.normalize(x)                   # Shape: [batch_size, 768]

        return x

    def get_config(self) -> dict:
        """Return the config of the model."""
        config = super().get_config()
        config.update({
            "config": self.config.to_dict(),
            "name": self.name
        })
        return config
        
class RetrievalChatbot(DeviceAwareModel):
    """Retrieval-based chatbot using pretrained embeddings and FAISS for similarity search."""
    def __init__(
        self,
        config: ChatbotConfig,
        device: str = None,
        strategy=None,
        reranker: Optional[CrossEncoderReranker] = None,
        summarizer: Optional[Summarizer] = None,
        mode: str = 'training' 
    ):
        super().__init__()
        self.config = config
        self.strategy = strategy
        self.device = device or self._setup_default_device()
        self.mode = mode.lower()
        
        # Initialize reranker, summarizer, tokenizer, encoder, and memory monitor
        self.reranker = reranker or self._initialize_reranker()
        self.tokenizer = self._initialize_tokenizer()
        self.encoder = self._initialize_encoder()
        self.summarizer = summarizer or self._initialize_summarizer()
        self.memory_monitor = GPUMemoryMonitor()
        
        # Initialize data pipeline
        logger.info("Initializing TFDataPipeline.")
        self.data_pipeline = TFDataPipeline(
            config=self.config,
            tokenizer=self.tokenizer,
            encoder=self.encoder,
            index_file_path='path/to/index',  # Update as needed # TODO: Update this path
            response_pool=[],
            max_length=self.config.max_context_token_limit,
            query_embeddings_cache={},
            neg_samples=self.config.neg_samples,
            index_type='IndexFlatIP',
            nlist=100, # Not used with IndexFlatIP
            max_retries=self.config.max_retries
        )
        
        # Collect unique responses from dialogues
        if self.mode == 'inference':
            logger.info("Mode set to 'inference'. Loading FAISS index and response pool.")
            self._load_faiss_index_and_responses()
        elif self.mode != 'training':
            logger.error(f"Unsupported mode in RetrievalChatbot init: {self.mode}")
            raise ValueError(f"Unsupported mode in RetrievalChatbot init: {self.mode}")
            
        # Initialize training history
        self.history = {
            "train_loss": [],
            "val_loss": [],
            "train_metrics": {},
            "val_metrics": {}
        }

    
    def _setup_default_device(self) -> str:
        """Set up default device if none is provided."""
        if tf.config.list_physical_devices('GPU'):
            return 'GPU'
        else:
            return 'CPU'

    def _initialize_reranker(self) -> CrossEncoderReranker:
        """Initialize the CrossEncoderReranker."""
        logger.info("Initializing default CrossEncoderReranker...")
        return CrossEncoderReranker(model_name="cross-encoder/ms-marco-MiniLM-L-12-v2")

    def _initialize_summarizer(self) -> Summarizer:
        """Initialize the Summarizer."""
        return Summarizer(
            tokenizer=self.tokenizer,
            model_name="t5-small",
            max_summary_length=self.config.max_context_token_limit // 4,
            device=self.device,
            max_summary_rounds=2
        )

    def _initialize_tokenizer(self) -> AutoTokenizer:
        """Initialize the tokenizer and add special tokens."""
        logger.info("Initializing tokenizer and adding special tokens...")
        tokenizer = AutoTokenizer.from_pretrained(self.config.pretrained_model)
        special_tokens = {
            "user": "<USER>",
            "assistant": "<ASSISTANT>",
            "context": "<CONTEXT>",
            "sep": "<SEP>"
        }
        tokenizer.add_special_tokens(
            {'additional_special_tokens': list(special_tokens.values())}
        )
        return tokenizer
    
    def _initialize_encoder(self) -> EncoderModel:
        """Initialize the EncoderModel and resize token embeddings."""
        logger.info("Initializing encoder model...")
        encoder = EncoderModel(
            self.config,
            name="shared_encoder",
        )
        
        new_vocab_size = len(self.tokenizer)
        encoder.pretrained.resize_token_embeddings(new_vocab_size)
        logger.info(f"Token embeddings resized to: {new_vocab_size}")
        return encoder
    
    def _load_faiss_index_and_responses(self) -> None:
        """Load FAISS index and response pool for inference."""
        try:
            logger.info(f"Loading FAISS index from {self.data_pipeline.index_file_path}...")
            self.data_pipeline.load_faiss_index(self.data_pipeline.index_file_path)
            logger.info("FAISS index loaded successfully.")
            
            # Load response pool associated with the FAISS index
            response_pool_path = self.data_pipeline.index_file_path.replace('.index', '_responses.json')
            if os.path.exists(response_pool_path):
                with open(response_pool_path, 'r', encoding='utf-8') as f:
                    self.data_pipeline.response_pool = json.load(f)
                logger.info(f"Loaded {len(self.data_pipeline.response_pool)} responses from {response_pool_path}.")
            else:
                logger.error(f"Response pool file not found at {response_pool_path}.")
                raise FileNotFoundError(f"Response pool file not found at {response_pool_path}.")
                
            # Validate FAISS index and response pool
            self.data_pipeline.validate_faiss_index()
            logger.info("FAISS index and response pool validated successfully.")
            
        except Exception as e:
            logger.error(f"Failed to load FAISS index and response pool: {e}")
            raise
    
    @classmethod
    def load_model(cls, load_dir: Union[str, Path], mode: str = 'training') -> 'RetrievalChatbot':
        """
        Load saved models and configuration.
        
        Args:
            load_dir (Union[str, Path]): Directory containing saved model files
            mode (str): Either 'training' or 'inference'. In inference mode, 
                    also loads FAISS index and response pool.
        """
        load_dir = Path(load_dir)
        
        # Load config
        with open(load_dir / "config.json", "r") as f:
            config = ChatbotConfig.from_dict(json.load(f))
        
        # Initialize chatbot with appropriate mode
        chatbot = cls(config, mode=mode)
        
        # Load models
        chatbot.encoder.pretrained = TFAutoModel.from_pretrained(
            load_dir / "shared_encoder",
            config=config
        )
        
        # Load tokenizer
        chatbot.tokenizer = AutoTokenizer.from_pretrained(load_dir / "tokenizer")
        logger.info(f"Models and tokenizer loaded from {load_dir}")
        
        # If in inference mode, load additional components
        if mode == 'inference':
            cls._prepare_model_for_inference(chatbot, load_dir)
        
        return chatbot
    
    @classmethod
    def _prepare_model_for_inference(cls, chatbot: 'RetrievalChatbot', load_dir: Path) -> None:
        """Internal method to load inference components."""
        try:
            # Load FAISS index
            faiss_path = load_dir / 'faiss_index.bin'
            if faiss_path.exists():
                chatbot.index = faiss.read_index(str(faiss_path))
                logger.info("FAISS index loaded successfully")
            else:
                raise FileNotFoundError(f"FAISS index not found at {faiss_path}")
            
            # Load response pool
            response_pool_path = load_dir / 'response_pool.json'
            if response_pool_path.exists():
                with open(response_pool_path, 'r') as f:
                    chatbot.response_pool = json.load(f)
                logger.info(f"Loaded {len(chatbot.response_pool)} responses")
            else:
                raise FileNotFoundError(f"Response pool not found at {response_pool_path}")
            
            # Verify dimensions match
            if chatbot.index.d != chatbot.config.embedding_dim:
                raise ValueError(
                    f"FAISS index dimension {chatbot.index.d} doesn't match "
                    f"model dimension {chatbot.config.embedding_dim}"
                )
                
        except Exception as e:
            logger.error(f"Error loading inference components: {e}")
            raise
    
    def save_models(self, save_dir: Union[str, Path]):
        """Save models and configuration."""
        save_dir = Path(save_dir)
        save_dir.mkdir(parents=True, exist_ok=True)
        
        # Save config
        with open(save_dir / "config.json", "w") as f:
            json.dump(self.config.to_dict(), f, indent=2)
        
        # Save models
        self.encoder.pretrained.save_pretrained(save_dir / "shared_encoder")
        
        # Save tokenizer
        self.tokenizer.save_pretrained(save_dir / "tokenizer")
        
        logger.info(f"Models and tokenizer saved to {save_dir}.")

    def retrieve_responses_cross_encoder(
        self,
        query: str,
        top_k: int,
        reranker: Optional[CrossEncoderReranker] = None,
        summarizer: Optional[Summarizer] = None,
        summarize_threshold: int = 512  # Summarize over 512 tokens
    ) -> List[Tuple[str, float]]:
        """
        Retrieve top-k from FAISS, then re-rank them with a cross-encoder.
        Optionally summarize the user query if it's too long.
        """
        if reranker is None:
            reranker = self.reranker
        if summarizer is None:
            summarizer = self.summarizer
            
        # Optional summarization
        if summarizer and len(query.split()) > summarize_threshold:
            logger.info(f"Query is long. Summarizing before cross-encoder. Original length: {len(query.split())}")
            query = summarizer.summarize_text(query)
            logger.info(f"Summarized query: {query}")

        # 2) Dense retrieval
        dense_topk = self.retrieve_responses_faiss(query, top_k=top_k)  # [(resp, dense_score), ...]
        
        if not dense_topk:
            return []

        # 3) Cross-encoder rerank
        candidate_texts = [pair[0] for pair in dense_topk]
        cross_scores = reranker.rerank(query, candidate_texts, max_length=256)

        # Combine
        combined = [(text, score) for (text, _), score in zip(dense_topk, cross_scores)]
        # Sort descending by cross-encoder score
        combined.sort(key=lambda x: x[1], reverse=True)

        return combined
    # def retrieve_responses_cross_encoder(
    #     self,
    #     query: str,
    #     top_k: int,
    #     reranker: Optional[CrossEncoderReranker] = None,
    #     summarizer: Optional[Summarizer] = None,
    #     summarize_threshold: int = 512  # Summarize over 512 tokens
    # ) -> List[Tuple[str, float]]:
    #     """
    #     Retrieve top-k from FAISS, then re-rank them with a cross-encoder.
    #     Optionally summarize the user query if it's too long.
    #     """
    #     if reranker is None:
    #         reranker = self.reranker
    #     if summarizer is None:
    #         summarizer = self.summarizer
            
    #     # Optional summarization
    #     if summarizer and len(query.split()) > summarize_threshold:
    #         logger.info(f"Query is long. Summarizing before cross-encoder. Original length: {len(query.split())}")
    #         query = summarizer.summarize_text(query)
    #         logger.info(f"Summarized query: {query}")

    #     # 2) Dense retrieval
    #     dense_topk = self.retrieve_responses_faiss(query, top_k=top_k)  # [(resp, dense_score), ...]

    #     if not dense_topk:
    #         return []

    #     # 3) Cross-encoder rerank
    #     candidate_texts = [pair[0] for pair in dense_topk]
    #     cross_scores = reranker.rerank(query, candidate_texts, max_length=256)

    #     # Combine
    #     combined = [(text, score) for (text, _), score in zip(dense_topk, cross_scores)]
    #     # Sort descending by cross-encoder score
    #     combined.sort(key=lambda x: x[1], reverse=True)

    #     return combined
    
    def retrieve_responses_faiss(self, query: str, top_k: int = 5) -> List[Tuple[str, float]]:
        """Retrieve top-k responses using FAISS."""
        if not hasattr(self.data_pipeline, 'index') or self.data_pipeline.index is None:
            logger.warning("FAISS index not initialized. Cannot retrieve responses.")
            return []
        
        # Encode the query using TFDataPipeline's method
        q_emb = self.data_pipeline.encode_query(query)  # Ensure encode_query is within TFDataPipeline
        q_emb_np = q_emb.numpy().astype('float32')  # Ensure type match
        
        # Normalize the query embedding for cosine similarity
        faiss.normalize_L2(q_emb_np)
        
        # Search the FAISS index
        distances, indices = self.data_pipeline.index.search(q_emb_np, top_k)
        
        # Map indices to responses and distances to similarities
        top_responses = []
        for i, idx in enumerate(indices[0]):
            if idx < len(self.data_pipeline.response_pool):
                top_responses.append((self.data_pipeline.response_pool[idx], float(distances[0][i])))
            else:
                logger.warning(f"FAISS returned invalid index {idx}. Skipping.")
        
        return top_responses
    # def retrieve_responses_faiss(self, query: str, top_k: int = 5) -> List[Tuple[str, float]]:
    #     """Retrieve top-k responses using FAISS."""
    #     if not hasattr(self, 'index') or self.index is None:
    #         logger.warning("FAISS index not initialized. Cannot retrieve responses.")
    #         return []
        
    #     # Encode the query
    #     q_emb = self.encode_query(query)  # Shape: [1, embedding_dim]
    #     q_emb_np = q_emb.numpy().astype('float32')  # Ensure type match
        
    #     # Normalize the query embedding for cosine similarity
    #     faiss.normalize_L2(q_emb_np)
        
    #     # Search the FAISS index
    #     distances, indices = self.index.search(q_emb_np, top_k)
        
    #     # Map indices to responses and distances to similarities
    #     top_responses = []
    #     for i, idx in enumerate(indices[0]):
    #         if idx < len(self.response_pool):
    #             top_responses.append((self.response_pool[idx], float(distances[0][i])))
    #         else:
    #             logger.warning(f"FAISS returned invalid index {idx}. Skipping.")
        
    #     return top_responses
    
    def chat(
        self,
        query: str,
        conversation_history: Optional[List[Tuple[str, str]]] = None,
        quality_checker: Optional['ResponseQualityChecker'] = None,
        top_k: int = 5,
    ) -> Tuple[str, List[Tuple[str, float]], Dict[str, Any]]:
        """
        Example chat method that always uses cross-encoder re-ranking 
        if self.reranker is available.
        """
        @self.run_on_device
        def get_response(self_arg, query_arg):
            # 1) Build conversation context string
            conversation_str = self_arg._build_conversation_context(query_arg, conversation_history)
            
            # 2) Retrieve + cross-encoder re-rank
            results = self_arg.retrieve_responses_cross_encoder(
                query=conversation_str,
                top_k=top_k,
                reranker=self_arg.reranker,
                summarizer=self_arg.summarizer,
                summarize_threshold=512
            )

            # 3) Handle empty or confidence
            if not results:
                return (
                    "I'm sorry, but I couldn't find a relevant response.",
                    [],
                    {}
                )

            if quality_checker:
                metrics = quality_checker.check_response_quality(query_arg, results)
                if not metrics.get('is_confident', False):
                    return (
                        "I need more information to provide a good answer. Could you please clarify?",
                        results,
                        metrics
                    )
                return results[0][0], results, metrics
            
            return results[0][0], results, {}
        
        return get_response(self, query)
    # def chat(
    #     self,
    #     query: str,
    #     conversation_history: Optional[List[Tuple[str, str]]] = None,
    #     quality_checker: Optional['ResponseQualityChecker'] = None,
    #     top_k: int = 5,
    # ) -> Tuple[str, List[Tuple[str, float]], Dict[str, Any]]:
    #     """
    #     Example chat method that always uses cross-encoder re-ranking 
    #     if self.reranker is available.
    #     """
    #     @self.run_on_device
    #     def get_response(self_arg, query_arg):  # Add parameters that match decorator's expectations
    #         # 1) Build conversation context string
    #         conversation_str = self_arg._build_conversation_context(query_arg, conversation_history)
            
    #         # 2) Retrieve + cross-encoder re-rank
    #         results = self_arg.retrieve_responses_cross_encoder(
    #             query=conversation_str,
    #             top_k=top_k,
    #             reranker=self_arg.reranker,
    #             summarizer=self_arg.summarizer,
    #             summarize_threshold=512
    #         )

    #         # 3) Handle empty or confidence
    #         if not results:
    #             return (
    #                 "I'm sorry, but I couldn't find a relevant response.",
    #                 [],
    #                 {}
    #             )

    #         if quality_checker:
    #             metrics = quality_checker.check_response_quality(query_arg, results)
    #             if not metrics.get('is_confident', False):
    #                 return (
    #                     "I need more information to provide a good answer. Could you please clarify?",
    #                     results,
    #                     metrics
    #                 )
    #             return results[0][0], results, metrics
            
    #         return results[0][0], results, {}
        
    #     return get_response(self, query)

    def _build_conversation_context(
        self, 
        query: str, 
        conversation_history: Optional[List[Tuple[str, str]]]
    ) -> str:
        """Build conversation context with better memory management."""
        if not conversation_history:
            return f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<USER>')]} {query}"
            
        conversation_parts = []
        for user_txt, assistant_txt in conversation_history:
            conversation_parts.extend([
                f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<USER>')]} {user_txt}",
                f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<ASSISTANT>')]} {assistant_txt}"
            ])
            
        conversation_parts.append(f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<USER>')]} {query}")
        return "\n".join(conversation_parts)
    # def _build_conversation_context(
    #     self, 
    #     query: str, 
    #     conversation_history: Optional[List[Tuple[str, str]]]
    # ) -> str:
    #     """Build conversation context with better memory management."""
    #     if not conversation_history:
    #         return f"{self.special_tokens['user']} {query}"
            
    #     conversation_parts = []
    #     for user_txt, assistant_txt in conversation_history:
    #         conversation_parts.extend([
    #             f"{self.special_tokens['user']} {user_txt}",
    #             f"{self.special_tokens['assistant']} {assistant_txt}"
    #         ])
            
    #     conversation_parts.append(f"{self.special_tokens['user']} {query}")
    #     return "\n".join(conversation_parts)
    
    def train_model(
        self,
        tfrecord_file_path: str,
        epochs: int = 20,
        batch_size: int = 16,
        validation_split: float = 0.2,
        checkpoint_dir: str = "checkpoints/",
        use_lr_schedule: bool = True,
        peak_lr: float = 1e-5,
        warmup_steps_ratio: float = 0.1,
        early_stopping_patience: int = 3,
        min_delta: float = 1e-4,
        test_mode: bool = False,
        initial_epoch: int = 0
    ) -> None:
        """Training using a pre-prepared TFRecord dataset."""
        logger.info("Starting training with pre-prepared TFRecord dataset...")
        
        def parse_tfrecord_fn(example_proto, max_length, neg_samples):
            """
            Parses a single TFRecord example.

            Args:
                example_proto: A serialized TFRecord example.
                max_length: The maximum sequence length for tokenization.
                neg_samples: The number of hard negatives per query.

            Returns:
                A tuple of (query_ids, positive_ids, negative_ids).
            """
            feature_description = {
                'query_ids': tf.io.FixedLenFeature([max_length], tf.int64),
                'positive_ids': tf.io.FixedLenFeature([max_length], tf.int64),
                'negative_ids': tf.io.FixedLenFeature([neg_samples * max_length], tf.int64),
            }
            parsed_features = tf.io.parse_single_example(example_proto, feature_description)

            query_ids = tf.cast(parsed_features['query_ids'], tf.int32)
            positive_ids = tf.cast(parsed_features['positive_ids'], tf.int32)
            negative_ids = tf.cast(parsed_features['negative_ids'], tf.int32)
            negative_ids = tf.reshape(negative_ids, [neg_samples, max_length])

            return query_ids, positive_ids, negative_ids        
        
        # Calculate total steps by counting the number of records in the TFRecord
        raw_dataset = tf.data.TFRecordDataset(tfrecord_file_path)
        total_pairs = sum(1 for _ in raw_dataset)
        logger.info(f"Total pairs in TFRecord: {total_pairs}")

        train_size = int(total_pairs * (1 - validation_split))
        val_size = total_pairs - train_size
        steps_per_epoch = math.ceil(train_size / batch_size)
        val_steps = math.ceil(val_size / batch_size)
        total_steps = steps_per_epoch * epochs
        buffer_size = total_pairs // 10 # 10% of the dataset

        logger.info(f"Training pairs: {train_size}")
        logger.info(f"Validation pairs: {val_size}")
        logger.info(f"Steps per epoch: {steps_per_epoch}")
        logger.info(f"Validation steps: {val_steps}")
        logger.info(f"Total steps: {total_steps}")

        # Set up optimizer with learning rate schedule
        if use_lr_schedule:
            warmup_steps = int(total_steps * warmup_steps_ratio)
            lr_schedule = self._get_lr_schedule(
                total_steps=total_steps,
                peak_lr=peak_lr,
                warmup_steps=warmup_steps
            )
            self.optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
            logger.info("Using custom learning rate schedule.")
        else:
            self.optimizer = tf.keras.optimizers.Adam(learning_rate=peak_lr)
            logger.info("Using fixed learning rate.")

        # Initialize checkpoint manager
        checkpoint = tf.train.Checkpoint(
            epoch=tf.Variable(0),
            optimizer=self.optimizer, 
            model=self.encoder,
            variables=self.encoder.variables
        )
        manager = tf.train.CheckpointManager(checkpoint, checkpoint_dir, max_to_keep=3, checkpoint_name='ckpt')

        # Restore from checkpoint if available
        latest_checkpoint = manager.latest_checkpoint
        if latest_checkpoint:
            history_path = Path(checkpoint_dir) / 'training_history.json'
            if history_path.exists():
                try:
                    with open(history_path, 'r') as f:
                        self.history = json.load(f)
                    logger.info(f"Loaded previous training history from {history_path}")
                except Exception as e:
                    logger.warning(f"Could not load history, starting fresh: {e}")
                    self.history = {'train_loss': [], 'val_loss': [], 'learning_rate': []}
            else:
                self.history = {'train_loss': [], 'val_loss': [], 'learning_rate': []}
            
            status = checkpoint.restore(latest_checkpoint)
            status.expect_partial() 
            
            logger.info(f"Restored from checkpoint: {latest_checkpoint}")
            # Get the checkpoint number to validate initial_epoch
            ckpt_number = int(latest_checkpoint.split('ckpt-')[-1])
            if initial_epoch == 0:
                initial_epoch = ckpt_number
            logger.info(f"Resuming from epoch {initial_epoch}")
        else:
            logger.info("Starting training from scratch")
            initial_epoch = 0
        
        # Setup TensorBoard
        log_dir = Path(checkpoint_dir) / "tensorboard_logs"
        log_dir.mkdir(parents=True, exist_ok=True)
        current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
        train_log_dir = str(log_dir / f"train_{current_time}")
        val_log_dir = str(log_dir / f"val_{current_time}")
        train_summary_writer = tf.summary.create_file_writer(train_log_dir)
        val_summary_writer = tf.summary.create_file_writer(val_log_dir)
        logger.info(f"TensorBoard logs will be saved in {log_dir}")

        # Define the parsing function with the appropriate max_length and neg_samples
        parse_fn = lambda x: parse_tfrecord_fn(x, self.config.max_context_token_limit, self.config.neg_samples)

        # Create the full dataset
        dataset = tf.data.TFRecordDataset(tfrecord_file_path)
        
        # Test mode for debugging
        if test_mode:
            subset_size = 200
            dataset = dataset.take(subset_size)
            logger.info(f"TEST MODE: Using only {subset_size} examples")
            # Recalculate sizes
            total_pairs = subset_size
            train_size = int(total_pairs * (1 - validation_split))
            val_size = total_pairs - train_size
            steps_per_epoch = math.ceil(train_size / batch_size)
            val_steps = math.ceil(val_size / batch_size)
            total_steps = steps_per_epoch * epochs
            buffer_size = total_pairs // 10 # 10% of the dataset
            epochs = min(epochs, 5)  # Limit epochs in test mode
            early_stopping_patience = 2
            logger.info(f"New training pairs: {train_size}")
            logger.info(f"New validation pairs: {val_size}")
        
        dataset = dataset.map(parse_fn, num_parallel_calls=tf.data.AUTOTUNE)
        
        # Split into training and validation sets
        train_dataset = dataset.take(train_size)
        val_dataset = dataset.skip(train_size).take(val_size)

        # Shuffle the training data
        train_dataset = train_dataset.shuffle(buffer_size=buffer_size)

        # Batch both datasets
        train_dataset = train_dataset.batch(batch_size, drop_remainder=True)
        train_dataset = train_dataset.prefetch(tf.data.AUTOTUNE)

        val_dataset = val_dataset.batch(batch_size, drop_remainder=True)
        val_dataset = val_dataset.prefetch(tf.data.AUTOTUNE)
        val_dataset = val_dataset.cache()

        # Training loop
        best_val_loss = float("inf")
        epochs_no_improve = 0

        for epoch in range(initial_epoch + 1, epochs + 1):
            # --- Training Phase ---
            epoch_loss_avg = tf.keras.metrics.Mean()
            batches_processed = 0

            try:
                train_pbar = tqdm(total=steps_per_epoch, desc=f"Training Epoch {epoch}", unit="batch")
                is_tqdm_train = True
            except ImportError:
                train_pbar = None
                is_tqdm_train = False
                logger.info("Training progress bar disabled")

            for q_batch, p_batch, n_batch in train_dataset:
                loss, grad_norm, post_clip_norm = self.train_step(q_batch, p_batch, n_batch)

                # Check for gradient issues
                grad_norm_value = float(grad_norm.numpy())
                post_clip_value = float(post_clip_norm.numpy())
                if grad_norm_value < 1e-7:
                    logger.warning(f"Potential vanishing gradient detected: norm = {grad_norm_value:.2e}")
                elif grad_norm_value > 100:
                    logger.warning(f"Potential exploding gradient detected: norm = {grad_norm_value:.2e}")
                
                if grad_norm_value != post_clip_value:
                    logger.info(f"Gradient clipped: {grad_norm_value:.2e} -> {post_clip_value:.2e}")
                
                epoch_loss_avg(loss)
                batches_processed += 1

                # Log to TensorBoard
                with train_summary_writer.as_default():
                    step = (epoch - 1) * steps_per_epoch + batches_processed
                    tf.summary.scalar("loss", loss, step=step)
                    tf.summary.scalar("gradient_norm_pre_clip", grad_norm, step=step)
                    tf.summary.scalar("gradient_norm_post_clip", post_clip_norm, step=step)

                # Update progress bar
                if use_lr_schedule:
                    current_lr = float(lr_schedule(self.optimizer.iterations))
                else:
                    current_lr = float(self.optimizer.learning_rate.numpy())

                if is_tqdm_train:
                    train_pbar.update(1)
                    train_pbar.set_postfix({
                        "loss": f"{loss.numpy():.4f}",
                        "pre_clip": f"{grad_norm_value:.2e}",
                        "post_clip": f"{post_clip_value:.2e}",
                        "lr": f"{current_lr:.2e}",
                        "batches": f"{batches_processed}/{steps_per_epoch}"
                    })

                # Memory cleanup
                gc.collect()

                if batches_processed >= steps_per_epoch:
                    break

            if is_tqdm_train and train_pbar:
                train_pbar.close()

            # --- Validation Phase ---
            val_loss_avg = tf.keras.metrics.Mean()
            val_batches_processed = 0

            try:
                val_pbar = tqdm(total=val_steps, desc="Validation", unit="batch")
                is_tqdm_val = True
            except ImportError:
                val_pbar = None
                is_tqdm_val = False
                logger.info("Validation progress bar disabled")

            for q_batch, p_batch, n_batch in val_dataset:
                val_loss = self.validation_step(q_batch, p_batch, n_batch)
                val_loss_avg(val_loss)
                val_batches_processed += 1

                if is_tqdm_val:
                    val_pbar.update(1)
                    val_pbar.set_postfix({
                        "val_loss": f"{val_loss.numpy():.4f}",
                        "batches": f"{val_batches_processed}/{val_steps}"
                    })

                # Memory cleanup
                gc.collect()

                if val_batches_processed >= val_steps:
                    break

            if is_tqdm_val and val_pbar:
                val_pbar.close()

            # End of epoch: compute final epoch stats, log, and save checkpoint
            train_loss = epoch_loss_avg.result().numpy()
            val_loss = val_loss_avg.result().numpy()
            logger.info(f"Epoch {epoch} Complete: Train Loss={train_loss:.4f}, Val Loss={val_loss:.4f}")

            # Log epoch metrics
            with train_summary_writer.as_default():
                tf.summary.scalar("epoch_loss", train_loss, step=epoch)
            with val_summary_writer.as_default():
                tf.summary.scalar("val_loss", val_loss, step=epoch)

            # Save checkpoint
            manager.save()
            
            # Save model after each epoch for testing/inference
            model_save_path = Path(checkpoint_dir) / f"model_epoch_{epoch}"
            self.save_models(model_save_path)
            logger.info(f"Saved model for epoch {epoch} at {model_save_path}")

            # Store metrics in history
            self.history['train_loss'].append(train_loss)
            self.history['val_loss'].append(val_loss)

            if use_lr_schedule:
                current_lr = float(lr_schedule(self.optimizer.iterations))
            else:
                current_lr = float(self.optimizer.learning_rate.numpy())

            # Log learning rate
            self.history.setdefault('learning_rate', []).append(current_lr)

            # Save history to file
            with open(history_path, 'w') as f:
                json.dump(self.history, f)
            logger.info(f"Saved training history to {history_path}")
            
            # Early stopping logic
            if val_loss < best_val_loss - min_delta:
                best_val_loss = val_loss
                epochs_no_improve = 0
                logger.info(f"Validation loss improved to {val_loss:.4f}. Reset patience.")
            else:
                epochs_no_improve += 1
                logger.info(f"No improvement this epoch. Patience: {epochs_no_improve}/{early_stopping_patience}")
                if epochs_no_improve >= early_stopping_patience:
                    logger.info("Early stopping triggered.")
                    break

        logger.info("Training completed!")
        
    @tf.function
    def train_step(
        self, 
        q_batch: tf.Tensor, 
        p_batch: tf.Tensor, 
        n_batch: tf.Tensor
    ) -> tf.Tensor:
        """
        Single training step using queries, positives, and hard negatives.
        """
        with tf.GradientTape() as tape:
            # Encode queries
            q_enc = self.encoder(q_batch, training=True)  # [batch_size, embed_dim]

            # Encode positives
            p_enc = self.encoder(p_batch, training=True)  # [batch_size, embed_dim]

            # Encode negatives
            # n_batch: [batch_size, neg_samples, max_length]
            shape = tf.shape(n_batch)
            bs = shape[0]
            neg_samples = shape[1]

            # Flatten negatives to feed them in one pass:
            # => [batch_size * neg_samples, max_length]
            n_batch_flat = tf.reshape(n_batch, [bs * neg_samples, shape[2]])
            n_enc_flat = self.encoder(n_batch_flat, training=True)  # [bs*neg_samples, embed_dim]

            # Reshape back => [batch_size, neg_samples, embed_dim]
            n_enc = tf.reshape(n_enc_flat, [bs, neg_samples, -1])

            # Combine the positive embedding and negative embeddings along dim=1
            # => shape [batch_size, 1 + neg_samples, embed_dim]
            # The first column is the positive; subsequent columns are negatives
            combined_p_n = tf.concat(
                [tf.expand_dims(p_enc, axis=1), n_enc], 
                axis=1
            )  # [bs, (1+neg_samples), embed_dim]

            # Now compute scores: dot product of q_enc with each column in combined_p_n
            # We'll use `tf.einsum` to handle the batch dimension properly
            # dot_products => shape [batch_size, (1+neg_samples)]
            dot_products = tf.einsum('bd,bkd->bk', q_enc, combined_p_n)

            # The label for each row is 0 (the first column is the correct/positive)
            labels = tf.zeros([bs], dtype=tf.int32)

            # Cross-entropy over the [batch_size, 1+neg_samples] scores
            loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
                labels=labels,
                logits=dot_products
            )
            loss = tf.reduce_mean(loss)

        # Calculate gradients
        gradients = tape.gradient(loss, self.encoder.trainable_variables)
        gradients_norm = tf.linalg.global_norm(gradients)
        
        # Clip gradients if norm exceeds threshold
        max_grad_norm = 1.0
        gradients, _ = tf.clip_by_global_norm(gradients, max_grad_norm, gradients_norm)
        post_clip_norm = tf.linalg.global_norm(gradients)
        
        # Apply gradients
        self.optimizer.apply_gradients(zip(gradients, self.encoder.trainable_variables))
        
        return loss, gradients_norm, post_clip_norm

    @tf.function
    def validation_step(
        self, 
        q_batch: tf.Tensor, 
        p_batch: tf.Tensor, 
        n_batch: tf.Tensor
    ) -> tf.Tensor:
        """
        Single validation step using queries, positives, and hard negatives.
        """
        q_enc = self.encoder(q_batch, training=False)
        p_enc = self.encoder(p_batch, training=False)

        shape = tf.shape(n_batch)
        bs = shape[0]
        neg_samples = shape[1]

        n_batch_flat = tf.reshape(n_batch, [bs * neg_samples, shape[2]])
        n_enc_flat = self.encoder(n_batch_flat, training=False)
        n_enc = tf.reshape(n_enc_flat, [bs, neg_samples, -1])

        combined_p_n = tf.concat(
            [tf.expand_dims(p_enc, axis=1), n_enc],
            axis=1
        )

        dot_products = tf.einsum('bd,bkd->bk', q_enc, combined_p_n)
        labels = tf.zeros([bs], dtype=tf.int32)

        loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels=labels,
            logits=dot_products
        )
        loss = tf.reduce_mean(loss)

        return loss
    
    def _get_lr_schedule(
        self,
        total_steps: int,
        peak_lr: float,
        warmup_steps: int
    ) -> tf.keras.optimizers.schedules.LearningRateSchedule:
        """Create a custom learning rate schedule with warmup and cosine decay."""
        class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
            def __init__(
                self,
                total_steps: int,
                peak_lr: float,
                warmup_steps: int
            ):
                super().__init__()
                self.total_steps = tf.cast(total_steps, tf.float32)
                self.peak_lr = tf.cast(peak_lr, tf.float32)
                
                # Adjust warmup_steps to not exceed half of total_steps
                adjusted_warmup_steps = min(warmup_steps, max(1, total_steps // 10))
                self.warmup_steps = tf.cast(adjusted_warmup_steps, tf.float32)
                
                # Calculate and store constants
                self.initial_lr = self.peak_lr * 0.1  # Start at 10% of peak
                self.min_lr = self.peak_lr * 0.01     # Minimum 1% of peak
                
                logger.info(f"Learning rate schedule initialized:")
                logger.info(f"  Initial LR: {float(self.initial_lr):.6f}")
                logger.info(f"  Peak LR: {float(self.peak_lr):.6f}")
                logger.info(f"  Min LR: {float(self.min_lr):.6f}")
                logger.info(f"  Warmup steps: {int(self.warmup_steps)}")
                logger.info(f"  Total steps: {int(self.total_steps)}")
            
            def __call__(self, step):
                step = tf.cast(step, tf.float32)
                
                # Warmup phase
                warmup_factor = tf.minimum(1.0, step / self.warmup_steps)
                warmup_lr = self.initial_lr + (self.peak_lr - self.initial_lr) * warmup_factor
                
                # Decay phase
                decay_steps = tf.maximum(1.0, self.total_steps - self.warmup_steps)
                decay_factor = (step - self.warmup_steps) / decay_steps
                decay_factor = tf.minimum(tf.maximum(0.0, decay_factor), 1.0)  # Clip to [0,1]
                
                cosine_decay = 0.5 * (1.0 + tf.cos(tf.constant(math.pi) * decay_factor))
                decay_lr = self.min_lr + (self.peak_lr - self.min_lr) * cosine_decay
                
                # Choose between warmup and decay
                final_lr = tf.where(step < self.warmup_steps, warmup_lr, decay_lr)
                
                # Ensure learning rate is valid
                final_lr = tf.maximum(self.min_lr, final_lr)
                final_lr = tf.where(tf.math.is_finite(final_lr), final_lr, self.min_lr)
                
                return final_lr
            
            def get_config(self):
                return {
                    "total_steps": self.total_steps,
                    "peak_lr": self.peak_lr,
                    "warmup_steps": self.warmup_steps,
                }
        
        return CustomSchedule(total_steps, peak_lr, warmup_steps)