csc525_retrieval_based_chatbot / taskmaster_processor.py
JoeArmani
Initial commit
3190e1e
raw
history blame
7.4 kB
from dataclasses import dataclass, field
from typing import List, Dict, Optional, Any
import json
import re
from pathlib import Path
from pipeline_config import PipelineConfig
@dataclass
class TaskmasterDialogue:
"""
Structured representation of a Taskmaster dialogue
"""
conversation_id: str
instruction_id: Optional[str]
scenario: Optional[str]
domain: Optional[str]
turns: List[Dict[str, Any]]
original_metadata: Dict[str, Any] = field(default_factory=dict)
def __str__(self):
return f"TaskmasterDialogue(conversation_id={self.conversation_id}, turns={len(self.turns)} turns)"
def validate(self) -> bool:
return bool(self.conversation_id and isinstance(self.turns, list))
class TaskmasterProcessor:
"""
Handles processing and preparation of Taskmaster dataset dialogues
"""
config: PipelineConfig
use_ontology: bool = False # Whether to load and use ontology
ontology: Optional[Dict[str, Any]] = None # Holds ontology data if loaded
domains: set = field(default_factory=set) # Tracks unique domains
scenarios: set = field(default_factory=set) # Tracks unique scenarios
def __init__(self, config: PipelineConfig, use_ontology: bool = False):
self.config = config
self.use_ontology = use_ontology
self.ontology = None
self.domains = set()
self.scenarios = set()
def load_dataset(self, base_dir: str, max_examples: Optional[int] = None) -> List[TaskmasterDialogue]:
"""
Load and parse Taskmaster JSON dataset.
Handles self-dialogs, woz-dialogs, and ontology files.
"""
required_files = {
"self-dialogs": "self-dialogs.json",
"woz-dialogs": "woz-dialogs.json",
"ontology": "ontology.json",
}
# Check for required files
missing_files = [name for name, path in required_files.items() if not Path(base_dir, path).exists()]
if missing_files:
raise FileNotFoundError(f"Missing required taskmaster files: {missing_files}")
# load ontology
ontology_path = Path(base_dir, required_files['ontology'])
with open(ontology_path, 'r', encoding='utf-8') as f:
self.ontology = json.load(f)
processed_dialogues = []
for file_key in ["self-dialogs", "woz-dialogs"]:
file_path = Path(base_dir, required_files[file_key])
with open(file_path, 'r', encoding='utf-8') as f:
raw_data = json.load(f)
for dialogue in raw_data:
# Extract core dialogue components
conversation_id = dialogue.get('conversation_id', '')
instruction_id = dialogue.get('instruction_id', None)
if 'utterances' in dialogue:
turns = self._process_utterances(dialogue['utterances'])
scenario = dialogue.get('scenario', '')
domain = self._extract_domain(scenario)
else:
turns = []
scenario = ''
domain = ''
# Store metadata
metadata = {k: v for k, v in dialogue.items()
if k not in {'conversation_id', 'instruction_id', 'utterances'}}
# Create structured dialogue object
processed_dialogue = TaskmasterDialogue(
conversation_id=conversation_id,
instruction_id=instruction_id,
scenario=scenario,
domain=domain,
turns=turns,
original_metadata=metadata
)
processed_dialogues.append(processed_dialogue)
# Update domain and scenario tracking
if domain:
self.domains.add(domain)
if scenario:
self.scenarios.add(scenario)
if max_examples and len(processed_dialogues) >= max_examples:
break
return processed_dialogues
def _process_utterances(self, utterances: List[Dict]) -> List[Dict]:
"""
Process utterances into a standardized format
"""
processed_turns = []
for utterance in utterances:
# Map Taskmaster speaker roles to your expected format
speaker = 'assistant' if utterance.get('speaker') == 'ASSISTANT' else 'user'
# Extract and clean the text
text = utterance.get('text', '').strip()
# Extract any segments or annotations if present
segments = utterance.get('segments', [])
# Create the processed turn
turn = {
'speaker': speaker,
'text': text,
'original_speaker': utterance.get('speaker', ''),
'segments': segments,
'metadata': {k: v for k, v in utterance.items()
if k not in {'speaker', 'text', 'segments'}}
}
processed_turns.append(turn)
return processed_turns
def _extract_domain(self, scenario: str) -> str:
"""
Extract domain from scenario description
"""
domain_patterns = {
'restaurant': r'\b(restaurant|dining|food|reservation)\b',
'movie': r'\b(movie|cinema|film|ticket)\b',
'ride_share': r'\b(ride|taxi|uber|lyft)\b',
'coffee': r'\b(coffee|café|cafe|starbucks)\b',
'pizza': r'\b(pizza|delivery|order food)\b',
'auto': r'\b(car|vehicle|repair|maintenance)\b',
}
scenario_lower = scenario.lower()
for domain, pattern in domain_patterns.items():
if re.search(pattern, scenario_lower):
return domain
return 'other'
def convert_to_pipeline_format(self, taskmaster_dialogues: List[TaskmasterDialogue]) -> List[Dict]:
"""
Convert TaskmasterDialogues to the format expected by the ProcessingPipeline
"""
pipeline_dialogues = []
for dialogue in taskmaster_dialogues:
# Convert turns to the expected format
processed_turns = []
for turn in dialogue.turns:
if turn['text'].strip(): # Skip empty turns
processed_turns.append({
'speaker': turn['speaker'],
'text': turn['text']
})
# Create dialogue in pipeline format
pipeline_dialogue = {
'dialogue_id': dialogue.conversation_id,
'turns': processed_turns,
'metadata': {
'instruction_id': dialogue.instruction_id,
'scenario': dialogue.scenario,
'domain': dialogue.domain,
**dialogue.original_metadata
}
}
pipeline_dialogues.append(pipeline_dialogue)
return pipeline_dialogues