csc525_retrieval_based_chatbot / chatbot_model.py
JoeArmani
restructuring
71ca212
raw
history blame
52.2 kB
import os
import numpy as np
from transformers import TFAutoModel, AutoTokenizer
import tensorflow as tf
from typing import List, Tuple, Dict, Optional, Union, Any
import math
from dataclasses import dataclass
import json
from pathlib import Path
import datetime
import faiss
import gc
import re
from tf_data_pipeline import TFDataPipeline
from response_quality_checker import ResponseQualityChecker
from cross_encoder_reranker import CrossEncoderReranker
from conversation_summarizer import DeviceAwareModel, Summarizer
import absl.logging
from logger_config import config_logger
from tqdm.auto import tqdm
absl.logging.set_verbosity(absl.logging.WARNING)
logger = config_logger(__name__)
@dataclass
class ChatbotConfig:
"""Configuration for the RetrievalChatbot."""
max_context_token_limit: int = 512
embedding_dim: int = 768
encoder_units: int = 256
num_attention_heads: int = 8
dropout_rate: float = 0.2
l2_reg_weight: float = 0.001
learning_rate: float = 0.001
min_text_length: int = 3
max_context_turns: int = 5
warmup_steps: int = 200
pretrained_model: str = 'distilbert-base-uncased'
dtype: str = 'float32'
freeze_embeddings: bool = False
embedding_batch_size: int = 64
search_batch_size: int = 64
max_batch_size: int = 64
neg_samples: int = 10
max_retries: int = 3
def to_dict(self) -> Dict:
"""Convert config to dictionary."""
return {k: (str(v) if isinstance(v, Path) else v)
for k, v in self.__dict__.items()}
@classmethod
def from_dict(cls, config_dict: Dict) -> 'ChatbotConfig':
"""Create config from dictionary."""
return cls(**{k: v for k, v in config_dict.items()
if k in cls.__dataclass_fields__})
class EncoderModel(tf.keras.Model):
"""Dual encoder model with pretrained embeddings."""
def __init__(
self,
config: ChatbotConfig,
name: str = "encoder",
**kwargs
):
super().__init__(name=name, **kwargs)
self.config = config
# Load pretrained model and freeze layers based on config
self.pretrained = TFAutoModel.from_pretrained(config.pretrained_model)
self._freeze_layers()
# Add Pooling layer (Global Average Pooling), Projection layer, Dropout, and Normalization
self.pooler = tf.keras.layers.GlobalAveragePooling1D()
self.projection = tf.keras.layers.Dense(
config.embedding_dim,
activation='tanh',
name="projection",
dtype=tf.float32
)
self.dropout = tf.keras.layers.Dropout(config.dropout_rate)
self.normalize = tf.keras.layers.Lambda(
lambda x: tf.nn.l2_normalize(x, axis=1),
name="l2_normalize"
)
def _freeze_layers(self):
"""Freeze layers of the pretrained model based on configuration."""
if self.config.freeze_embeddings:
self.pretrained.trainable = False
logger.info("All pretrained layers frozen.")
else:
# Freeze only the first 'n' transformer layers
for i, layer in enumerate(self.pretrained.layers):
if isinstance(layer, tf.keras.layers.Layer):
if hasattr(layer, 'trainable'):
# Freeze the first transformer block
if i < 1:
layer.trainable = False
logger.info(f"Layer {i} frozen.")
else:
layer.trainable = True
def call(self, inputs: tf.Tensor, training: bool = False) -> tf.Tensor:
"""Forward pass."""
# Get pretrained embeddings
pretrained_outputs = self.pretrained(inputs, training=training)
x = pretrained_outputs.last_hidden_state # Shape: [batch_size, seq_len, embedding_dim]
# Apply pooling, projection, dropout, and normalization
x = self.pooler(x) # Shape: [batch_size, 768]
x = self.projection(x) # Shape: [batch_size, 768]
x = self.dropout(x, training=training)
x = self.normalize(x) # Shape: [batch_size, 768]
return x
def get_config(self) -> dict:
"""Return the config of the model."""
config = super().get_config()
config.update({
"config": self.config.to_dict(),
"name": self.name
})
return config
class RetrievalChatbot(DeviceAwareModel):
"""Retrieval-based chatbot using pretrained embeddings and FAISS for similarity search."""
def __init__(
self,
config: ChatbotConfig,
device: str = None,
strategy=None,
reranker: Optional[CrossEncoderReranker] = None,
summarizer: Optional[Summarizer] = None,
mode: str = 'training'
):
super().__init__()
self.config = config
self.strategy = strategy
self.device = device or self._setup_default_device()
self.mode = mode.lower()
# Initialize reranker, summarizer, tokenizer, encoder, and memory monitor
self.reranker = reranker or self._initialize_reranker()
self.tokenizer = self._initialize_tokenizer()
self.encoder = self._initialize_encoder()
self.summarizer = summarizer or self._initialize_summarizer()
# Initialize data pipeline
logger.info("Initializing TFDataPipeline.")
self.data_pipeline = TFDataPipeline(
config=self.config,
tokenizer=self.tokenizer,
encoder=self.encoder,
index_file_path='new_iteration/data_prep_iterative_models/faiss_indices/faiss_index_production.index',
response_pool=[],
max_length=self.config.max_context_token_limit,
query_embeddings_cache={},
neg_samples=self.config.neg_samples,
index_type='IndexFlatIP',
nlist=100, # Not used with IndexFlatIP
max_retries=self.config.max_retries
)
# Collect unique responses from dialogues
if self.mode == 'inference':
logger.info("Mode set to 'inference'. Loading FAISS index and response pool.")
self._load_faiss_index_and_responses()
elif self.mode != 'training':
logger.error(f"Unsupported mode in RetrievalChatbot init: {self.mode}")
raise ValueError(f"Unsupported mode in RetrievalChatbot init: {self.mode}")
# Initialize training history
self.history = {
"train_loss": [],
"val_loss": [],
"train_metrics": {},
"val_metrics": {}
}
def _setup_default_device(self) -> str:
"""Set up default device if none is provided."""
if tf.config.list_physical_devices('GPU'):
return 'GPU'
else:
return 'CPU'
def _initialize_reranker(self) -> CrossEncoderReranker:
"""Initialize the CrossEncoderReranker."""
logger.info("Initializing default CrossEncoderReranker...")
return CrossEncoderReranker(model_name="cross-encoder/ms-marco-MiniLM-L-12-v2")
def _initialize_summarizer(self) -> Summarizer:
"""Initialize the Summarizer."""
return Summarizer(
tokenizer=self.tokenizer,
model_name="t5-small",
max_summary_length=self.config.max_context_token_limit // 4,
device=self.device,
max_summary_rounds=2
)
def _initialize_tokenizer(self) -> AutoTokenizer:
"""Initialize the tokenizer and add special tokens."""
logger.info("Initializing tokenizer and adding special tokens...")
tokenizer = AutoTokenizer.from_pretrained(self.config.pretrained_model)
special_tokens = {
"user": "<USER>",
"assistant": "<ASSISTANT>",
"context": "<CONTEXT>",
"sep": "<SEP>"
}
tokenizer.add_special_tokens(
{'additional_special_tokens': list(special_tokens.values())}
)
return tokenizer
def _initialize_encoder(self) -> EncoderModel:
"""Initialize the EncoderModel and resize token embeddings."""
logger.info("Initializing encoder model...")
encoder = EncoderModel(
self.config,
name="shared_encoder",
)
new_vocab_size = len(self.tokenizer)
encoder.pretrained.resize_token_embeddings(new_vocab_size)
logger.info(f"Token embeddings resized to: {new_vocab_size}")
return encoder
def _load_faiss_index_and_responses(self) -> None:
"""Load FAISS index and response pool for inference."""
try:
logger.info(f"Loading FAISS index from {self.data_pipeline.index_file_path}...")
self.data_pipeline.load_faiss_index(self.data_pipeline.index_file_path)
logger.info("FAISS index loaded successfully.")
# Load response pool associated with the FAISS index
response_pool_path = self.data_pipeline.index_file_path.replace('.index', '_responses.json')
if os.path.exists(response_pool_path):
with open(response_pool_path, 'r', encoding='utf-8') as f:
self.data_pipeline.response_pool = json.load(f)
logger.info(f"Loaded {len(self.data_pipeline.response_pool)} responses from {response_pool_path}.")
else:
logger.error(f"Response pool file not found at {response_pool_path}.")
raise FileNotFoundError(f"Response pool file not found at {response_pool_path}.")
# Validate FAISS index and response pool
self.data_pipeline.validate_faiss_index()
logger.info("FAISS index and response pool validated successfully.")
except Exception as e:
logger.error(f"Failed to load FAISS index and response pool: {e}")
raise
@classmethod
def load_model(cls, load_dir: Union[str, Path], mode: str = 'training') -> 'RetrievalChatbot':
"""
Load saved models and configuration.
"""
load_dir = Path(load_dir)
# 1) Load config
with open(load_dir / "config.json", "r") as f:
config = ChatbotConfig.from_dict(json.load(f))
# 2) Initialize chatbot
chatbot = cls(config, mode=mode)
# 3) Load DistilBERT from huggingface folder
chatbot.encoder.pretrained = TFAutoModel.from_pretrained(
load_dir / "shared_encoder",
config=config
)
dummy_input = tf.zeros((1, config.max_context_token_limit), dtype=tf.int32)
_ = chatbot.encoder(dummy_input, training=False)
# 4) Load tokenizer
chatbot.tokenizer = AutoTokenizer.from_pretrained(load_dir / "tokenizer")
logger.info(f"Models and tokenizer loaded from {load_dir}")
# 5) Load the custom top layers' weights
custom_weights_path = load_dir / "encoder_custom_weights.weights.h5"
if custom_weights_path.exists():
chatbot.encoder.load_weights(str(custom_weights_path))
logger.info("Loaded custom encoder weights for projection/dropout/etc.")
else:
logger.warning(f"No custom encoder weights found at {custom_weights_path}. The top-level projection layer won't have learned parameters.")
# 6) If in inference mode, load FAISS, etc.
if mode == 'inference':
cls._prepare_model_for_inference(chatbot, load_dir)
return chatbot
@classmethod
def _prepare_model_for_inference(cls, chatbot: 'RetrievalChatbot', load_dir: Path) -> None:
"""Internal method to load inference components."""
try:
# Load FAISS index
faiss_path = load_dir / 'faiss_indices/faiss_index_production.index'
if faiss_path.exists():
chatbot.index = faiss.read_index(str(faiss_path))
logger.info("FAISS index loaded successfully")
else:
raise FileNotFoundError(f"FAISS index not found at {faiss_path}")
# Load response pool
response_pool_path = load_dir / 'faiss_indices/faiss_index_production_responses.json'
if response_pool_path.exists():
with open(response_pool_path, 'r') as f:
chatbot.response_pool = json.load(f)
logger.info(f"Loaded {len(chatbot.response_pool)} responses")
else:
raise FileNotFoundError(f"Response pool not found at {response_pool_path}")
# Verify dimensions match
if chatbot.index.d != chatbot.config.embedding_dim:
raise ValueError(
f"FAISS index dimension {chatbot.index.d} doesn't match "
f"model dimension {chatbot.config.embedding_dim}"
)
except Exception as e:
logger.error(f"Error loading inference components: {e}")
raise
def save_models(self, save_dir: Union[str, Path]):
"""Save models and configuration."""
save_dir = Path(save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
# Save config
with open(save_dir / "config.json", "w") as f:
json.dump(self.config.to_dict(), f, indent=2)
# Save the HF DistilBERT submodule:
self.encoder.pretrained.save_pretrained(save_dir / "shared_encoder")
# ALSO save custom top-level layers' weights
self.encoder.save_weights(save_dir / "encoder_custom_weights.weights.h5")
# Save tokenizer
self.tokenizer.save_pretrained(save_dir / "tokenizer")
logger.info(f"Models and tokenizer saved to {save_dir}.")
def sigmoid(self, x: float) -> float:
return 1 / (1 + np.exp(-x))
def retrieve_responses_cross_encoder(
self,
query: str,
top_k: int = 10,
reranker: Optional[CrossEncoderReranker] = None,
summarizer: Optional[Summarizer] = None,
summarize_threshold: int = 512
) -> List[Tuple[str, float]]:
"""
Retrieve top-k responses with optional domain-based boosting
and cross-encoder re-ranking.
Args:
query: The user's input text.
top_k: Number of final results to return.
reranker: CrossEncoderReranker for refined scoring, if available.
summarizer: Summarizer for long queries, if desired.
summarize_threshold: Summarize if query wordcount > threshold.
Returns:
List of (response_text, final_score).
"""
# 1) Optional query summarization
if summarizer and len(query.split()) > summarize_threshold:
logger.info(f"Query is long ({len(query.split())} words). Summarizing.")
query = summarizer.summarize_text(query)
logger.info(f"Summarized Query: {query}")
detected_domain = self.detect_domain_from_query(query)
#logger.debug(f"Detected domain '{detected_domain}' for query: {query}")
# Retrieve initial candidates from FAISS
initial_k = min(top_k * 10, len(self.data_pipeline.response_pool))
faiss_candidates = self.retrieve_responses_faiss(query, domain=detected_domain, top_k=initial_k)
texts = [item[0] for item in faiss_candidates]
# Re-rank these boosted candidates
if not reranker:
reranker = CrossEncoderReranker(model_name="cross-encoder/ms-marco-MiniLM-L-12-v2")
ce_scores = reranker.rerank(query, texts, max_length=256)
# Combine cross-encoder score with the base FAISS score (simple multiplicative approach)
final_candidates = []
for (resp_text, faiss_score), ce_score in zip(faiss_candidates, ce_scores):
# TODO: dial this in.
ce_prob = self.sigmoid(ce_score) # ~ relevance in [0..1]
faiss_norm = (faiss_score + 1)/2.0
combined_score = 0.9 * ce_prob + 0.1 * faiss_norm
# alpha = 0.9
# print(f'CE SCORE: {ce_score} FAISS SCORE: {faiss_score}')
# combined_score = alpha * ce_score + (1 - alpha) * faiss_score
length_adjusted_score = self.length_adjust_score(resp_text, combined_score)
#combined_score = ce_score * faiss_score
#final_candidates.append((resp_text, combined_score))
final_candidates.append((resp_text, length_adjusted_score))
# Sort descending by combined score
final_candidates.sort(key=lambda x: x[1], reverse=True)
# Return top_k
return final_candidates[:top_k]
DOMAIN_KEYWORDS = {
'restaurant': ['restaurant', 'dining', 'food', 'dine', 'reservation', 'table', 'menu', 'cuisine', 'eat', 'place to eat', 'hungry', 'chef', 'dish', 'meal', 'brunch', 'bistro', 'buffet', 'catering', 'gourmet', 'fast food', 'fine dining', 'takeaway', 'delivery', 'restaurant booking'],
'movie': ['movie', 'cinema', 'film', 'ticket', 'showtime', 'showing', 'theater', 'flick', 'screening', 'film ticket', 'film show', 'blockbuster', 'premiere', 'trailer', 'director', 'actor', 'actress', 'plot', 'genre', 'screen', 'sequel', 'animation', 'documentary'],
'ride_share': ['ride', 'taxi', 'uber', 'lyft', 'car service', 'pickup', 'dropoff', 'driver', 'cab', 'hailing', 'rideshare', 'ride hailing', 'carpool', 'chauffeur', 'transit', 'transportation', 'hail ride'],
'coffee': ['coffee', 'café', 'cafe', 'starbucks', 'espresso', 'latte', 'mocha', 'americano', 'barista', 'brew', 'cappuccino', 'macchiato', 'iced coffee', 'cold brew', 'espresso machine', 'coffee shop', 'tea', 'chai', 'java', 'bean', 'roast', 'decaf'],
'pizza': ['pizza', 'delivery', 'order food', 'pepperoni', 'topping', 'pizzeria', 'slice', 'pie', 'margherita', 'deep dish', 'thin crust', 'cheese', 'oven', 'tossed', 'sauce', 'garlic bread', 'calzone'],
'auto': ['car', 'vehicle', 'repair', 'maintenance', 'mechanic', 'oil change', 'garage', 'auto shop', 'tire', 'check engine', 'battery', 'transmission', 'brake', 'engine diagnostics', 'carwash', 'detail', 'alignment', 'exhaust', 'spark plug', 'dashboard'],
}
def extract_keywords(self, query: str) -> List[str]:
"""
Return any domain keywords present in the query (lowercased).
"""
query_lower = query.lower()
found = set()
for domain, kw_list in self.DOMAIN_KEYWORDS.items():
for kw in kw_list:
if kw in query_lower:
found.add(kw)
return list(found)
def length_adjust_score(self, text: str, base_score: float) -> float:
"""
Penalize very short lines or numeric lines; mildly reward longer lines.
Adjust carefully so you don't overshadow cross-encoder signals.
"""
words = text.split()
wcount = len(words)
# Penalty if under 3 words
if wcount < 4:
return base_score * 0.8
# Bonus for lines > 12 words
if wcount > 12:
extra = min(wcount - 12, 8)
bonus = 0.0005 * extra
base_score += bonus
return base_score
def detect_domain_from_query(self, query: str) -> str:
"""
Detect the domain of the query based on keywords.
"""
domain_patterns = {
'restaurant': r'\b(restaurant|restaurants?|dining|food|foods?|dine|reservation|reservations?|table|tables?|menu|menus?|cuisine|cuisines?|eat|eats?|place\s?to\s?eat|places\s?to\s?eat|hungry|chef|chefs?|dish|dishes?|meal|meals?|fork|forks?|knife|knives?|spoon|spoons?|brunch|bistro|buffet|buffets?|catering|caterings?|gourmet|fast\s?food|fine\s?dining|takeaway|takeaways?|delivery|deliveries|restaurant\s?booking)\b',
'movie': r'\b(movie|movies?|cinema|cinemas?|film|films?|ticket|tickets?|showtime|showtimes?|showing|showings?|theater|theaters?|flick|flicks?|screening|screenings?|film\s?ticket|film\s?tickets?|film\s?show|film\s?shows?|blockbuster|blockbusters?|premiere|premieres?|trailer|trailers?|director|directors?|actor|actors?|actress|actresses?|plot|plots?|genre|genres?|screen|screens?|sequel|sequels?|animation|animations?|documentary|documentaries)\b',
'ride_share': r'\b(ride|rides?|taxi|taxis?|uber|lyft|car\s?service|car\s?services?|pickup|pickups?|dropoff|dropoffs?|driver|drivers?|cab|cabs?|hailing|hailings?|rideshare|rideshares?|ride\s?hailing|ride\s?hailings?|carpool|carpools?|chauffeur|chauffeurs?|transit|transits?|transportation|transportations?|hail\s?ride|hail\s?rides?)\b',
'coffee': r'\b(coffee|coffees?|café|cafés?|cafe|cafes?|starbucks|espresso|espressos?|latte|lattes?|mocha|mochas?|americano|americanos?|barista|baristas?|brew|brews?|cappuccino|cappuccinos?|macchiato|macchiatos?|iced\s?coffee|iced\s?coffees?|cold\s?brew|cold\s?brews?|espresso\s?machine|espresso\s?machines?|coffee\s?shop|coffee\s?shops?|tea|teas?|chai|chais?|java|javas?|bean|beans?|roast|roasts?|decaf)\b',
'pizza': r'\b(pizza|pizzas?|delivery|deliveries|order\s?food|order\s?foods?|pepperoni|pepperonis?|topping|toppings?|pizzeria|pizzerias?|slice|slices?|pie|pies?|margherita|margheritas?|deep\s?dish|deep\s?dishes?|thin\s?crust|thin\s?crusts?|cheese|cheeses?|oven|ovens?|tossed|tosses?|sauce|sauces?|garlic\s?bread|garlic\s?breads?|calzone|calzones?)\b',
'auto': r'\b(car|cars?|vehicle|vehicles?|repair|repairs?|maintenance|maintenances?|mechanic|mechanics?|oil\s?change|oil\s?changes?|garage|garages?|auto\s?shop|auto\s?shops?|tire|tires?|check\s?engine|check\s?engines?|battery|batteries?|transmission|transmissions?|brake|brakes?|engine\s?diagnostics|engine\s?diagnostic|carwash|carwashes?|detail|details?|alignment|alignments?|exhaust|exhausts?|spark\s?plug|spark\s?plugs?|dashboard|dashboards?)\b',
}
# Check for matches
for domain, pattern in domain_patterns.items():
if re.search(pattern, query.lower()):
return domain
return 'other'
def is_numeric_response(self, text: str) -> bool:
"""
Return True if `text` is purely digits (and/or spaces),
with optional punctuation like '.' at the end.
"""
pattern = r'^[\s]*[\d]+([\s.,\d]+)*[\s]*$'
return bool(re.match(pattern, text.strip()))
def retrieve_responses_faiss(
self,
query: str,
domain: str = 'other',
top_k: int = 5,
boost_factor: float = 1.05
) -> List[Tuple[str, float]]:
"""
Retrieve top-k responses from the FAISS index (IndexFlatIP) given a user query.
Args:
query (str): The user input text.
domain (str, optional): The detected domain. Defaults to 'other'.
top_k (int, optional): Number of top results to return. Defaults to 5.
boost_factor (float, optional): Factor to boost scores for keyword matches. Defaults to 1.3.
Returns:
List[Tuple[str, float]]: List of (response_text, similarity) sorted by descending similarity.
"""
# Encode the query
q_emb = self.data_pipeline.encode_query(query)
q_emb_np = q_emb.reshape(1, -1).astype('float32')
# Search the index
distances, indices = self.data_pipeline.index.search(q_emb_np, top_k * 10)
# IndexFlatIP: 'distances' are inner products (cosine similarities for normalized vectors)
candidates = []
for rank, idx in enumerate(indices[0]):
if idx < 0:
continue
response = self.data_pipeline.response_pool[idx]
text = response.get('text', '').strip()
cand_domain = response.get('domain', 'other')
score = distances[0][rank]
# Skip purely numeric or extremely short text (fewer than 3 words):
words = text.split()
if len(words) < 4:
continue
if self.is_numeric_response(text):
continue
candidates.append((text, cand_domain, score))
if not candidates:
logger.warning("No valid candidates found after initial numeric/length filtering.")
return []
# Sort candidates by score descending
candidates.sort(key=lambda x: x[2], reverse=True)
# Filter in-domain responses
in_domain = [c for c in candidates if c[1] == domain]
if not in_domain:
logger.info(f"No in-domain responses found for '{domain}'. Using all candidates.")
in_domain = candidates
# Boost responses containing query keywords
query_keywords = self.extract_keywords(query)
boosted = []
for (resp_text, resp_domain, score) in in_domain:
new_score = score
# If the domain is known AND the response text
# shares any query keywords, apply a small boost
if query_keywords and any(kw in resp_text.lower() for kw in query_keywords):
new_score *= boost_factor
#logger.debug(f"Boosting response: '{resp_text}' by factor {boost_factor}")
# Apply length penalty/bonus
new_score = self.length_adjust_score(resp_text, new_score)
boosted.append((resp_text, new_score))
# Sort boosted responses
boosted.sort(key=lambda x: x[1], reverse=True)
# Print top 10
for resp, score in boosted[:150]:
logger.debug(f"Candidate: '{resp}' with score {score}")
# 8) Return top_k
return boosted[:top_k]
def chat(
self,
query: str,
conversation_history: Optional[List[Tuple[str, str]]] = None,
quality_checker: Optional['ResponseQualityChecker'] = None,
top_k: int = 10,
) -> Tuple[str, List[Tuple[str, float]], Dict[str, Any]]:
"""
Example chat method that always uses cross-encoder re-ranking
if self.reranker is available.
"""
@self.run_on_device
def get_response(self_arg, query_arg):
# 1) Build conversation context string
conversation_str = self_arg._build_conversation_context(query_arg, conversation_history)
# 2) Retrieve + cross-encoder re-rank
results = self_arg.retrieve_responses_cross_encoder(
query=conversation_str,
top_k=top_k,
reranker=self_arg.reranker,
summarizer=self_arg.summarizer,
summarize_threshold=512
)
# 3) Handle empty or confidence
if not results:
return (
"I'm sorry, but I couldn't find a relevant response.",
[],
{}
)
if quality_checker:
metrics = quality_checker.check_response_quality(query_arg, results)
if not metrics.get('is_confident', False):
return (
"I need more information to provide a good answer. Could you please clarify?",
results,
metrics
)
return results[0][0], results, metrics
return results[0][0], results, {}
return get_response(self, query)
def _build_conversation_context(
self,
query: str,
conversation_history: Optional[List[Tuple[str, str]]]
) -> str:
"""Build conversation context with better memory management."""
if not conversation_history:
return f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<USER>')]} {query}"
conversation_parts = []
for user_txt, assistant_txt in conversation_history:
conversation_parts.extend([
f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<USER>')]} {user_txt}",
f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<ASSISTANT>')]} {assistant_txt}"
])
conversation_parts.append(f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<USER>')]} {query}")
return "\n".join(conversation_parts)
def train_model(
self,
tfrecord_file_path: str,
epochs: int = 20,
batch_size: int = 16,
validation_split: float = 0.2,
checkpoint_dir: str = "checkpoints/",
use_lr_schedule: bool = True,
peak_lr: float = 1e-5,
warmup_steps_ratio: float = 0.1,
early_stopping_patience: int = 3,
min_delta: float = 1e-4,
test_mode: bool = False,
initial_epoch: int = 0
) -> None:
"""
Train the retrieval model using a pre-prepared TFRecord dataset.
This method handles:
- Checkpoint loading/restoring
- LR scheduling
- Epoch/iteration tracking
- Optional training-history logging
- Basic early stopping
"""
logger.info("Starting training with pre-prepared TFRecord dataset...")
def parse_tfrecord_fn(example_proto, max_length, neg_samples):
"""
Parses a single TFRecord example.
"""
feature_description = {
'query_ids': tf.io.FixedLenFeature([max_length], tf.int64),
'positive_ids': tf.io.FixedLenFeature([max_length], tf.int64),
'negative_ids': tf.io.FixedLenFeature([neg_samples * max_length], tf.int64),
}
parsed_features = tf.io.parse_single_example(example_proto, feature_description)
query_ids = tf.cast(parsed_features['query_ids'], tf.int32)
positive_ids = tf.cast(parsed_features['positive_ids'], tf.int32)
negative_ids = tf.cast(parsed_features['negative_ids'], tf.int32)
negative_ids = tf.reshape(negative_ids, [neg_samples, max_length])
return query_ids, positive_ids, negative_ids
# Count total records in TFRecord
raw_dataset = tf.data.TFRecordDataset(tfrecord_file_path)
total_pairs = sum(1 for _ in raw_dataset)
logger.info(f"Total pairs in TFRecord: {total_pairs}")
train_size = int(total_pairs * (1 - validation_split))
val_size = total_pairs - train_size
steps_per_epoch = math.ceil(train_size / batch_size)
val_steps = math.ceil(val_size / batch_size)
total_steps = steps_per_epoch * epochs
buffer_size = max(1, total_pairs // 10) # 10% of the dataset
logger.info(f"Training pairs: {train_size}")
logger.info(f"Validation pairs: {val_size}")
logger.info(f"Steps per epoch: {steps_per_epoch}")
logger.info(f"Validation steps: {val_steps}")
logger.info(f"Total steps: {total_steps}")
# Set up optimizer & LR schedule
if use_lr_schedule:
warmup_steps = int(total_steps * warmup_steps_ratio)
lr_schedule = self._get_lr_schedule(
total_steps=total_steps,
peak_lr=tf.cast(peak_lr, tf.float32),
warmup_steps=warmup_steps
)
self.optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
logger.info("Using custom learning rate schedule.")
else:
self.optimizer = tf.keras.optimizers.Adam(learning_rate=tf.cast(peak_lr, tf.float32))
logger.info("Using fixed learning rate.")
# Initialize optimizer with dummy step
dummy_input = tf.zeros((1, self.config.max_context_token_limit), dtype=tf.int32)
with tf.GradientTape() as tape:
dummy_output = self.encoder(dummy_input)
dummy_loss = tf.cast(tf.reduce_mean(dummy_output), tf.float32)
dummy_grads = tape.gradient(dummy_loss, self.encoder.trainable_variables)
self.optimizer.apply_gradients(zip(dummy_grads, self.encoder.trainable_variables))
# Create checkpoint and manager
checkpoint = tf.train.Checkpoint(
epoch=tf.Variable(0, dtype=tf.int32),
optimizer=self.optimizer,
model=self.encoder
)
manager = tf.train.CheckpointManager(
checkpoint,
directory=checkpoint_dir,
max_to_keep=3,
checkpoint_name='ckpt'
)
# Restore from existing checkpoint if present
latest_checkpoint = manager.latest_checkpoint
history_path = Path(checkpoint_dir) / 'training_history.json'
# If you want to log all epoch losses across runs
if not hasattr(self, 'history'):
self.history = {'train_loss': [], 'val_loss': [], 'learning_rate': []}
if latest_checkpoint and not test_mode:
# Add checkpoint inspection
logger.info(f"\nTrying to load checkpoint from: {latest_checkpoint}")
reader = tf.train.load_checkpoint(latest_checkpoint)
# shape_from_key = reader.get_variable_to_shape_map()
# dtype_from_key = reader.get_variable_to_dtype_map()
# logger.info("\nCheckpoint Variables:")
# for key in shape_from_key:
# logger.info(f"{key}: dtype={dtype_from_key[key]} - Shape: {shape_from_key[key]}")
status = checkpoint.restore(latest_checkpoint)
status.assert_consumed()
logger.info(f"Restored from checkpoint: {latest_checkpoint}")
logger.info(f"Optimizer iterations after restore: {self.optimizer.iterations.numpy()}")
# Verify learning rate after restore
if use_lr_schedule:
current_lr = float(lr_schedule(self.optimizer.iterations))
else:
current_lr = float(self.optimizer.learning_rate.numpy())
logger.info(f"Current learning rate after restore: {current_lr:.2e}")
# Derive initial_epoch from checkpoint name if not passed in
ckpt_number = int(latest_checkpoint.split('ckpt-')[-1])
if initial_epoch == 0:
initial_epoch = ckpt_number
# Assign to checkpoint.epoch so we keep counting from that
checkpoint.epoch.assign(tf.cast(initial_epoch, tf.int32))
logger.info(f"Resuming from epoch {initial_epoch}")
# If you want to load old history from file:
if history_path.exists():
try:
with open(history_path, 'r') as f:
self.history = json.load(f)
logger.info(f"Loaded previous training history from {history_path}")
except Exception as e:
logger.warning(f"Could not load history, starting fresh: {e}")
# Fix for custom weights not being saved in the full model.
self.save_models(Path(checkpoint_dir) / "pretrained_full_model")
logger.info(f"Manually saved custom weights after restore.")
else:
logger.info("Starting training from scratch")
checkpoint.epoch.assign(tf.cast(0, tf.int32))
initial_epoch = 0
# Set up TensorBoard
log_dir = Path(checkpoint_dir) / "tensorboard_logs"
log_dir.mkdir(parents=True, exist_ok=True)
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
train_log_dir = str(log_dir / f"train_{current_time}")
val_log_dir = str(log_dir / f"val_{current_time}")
train_summary_writer = tf.summary.create_file_writer(train_log_dir)
val_summary_writer = tf.summary.create_file_writer(val_log_dir)
logger.info(f"TensorBoard logs will be saved in {log_dir}")
# Parse dataset
dataset = tf.data.TFRecordDataset(tfrecord_file_path)
# Optional: test/debug mode with small subset
if test_mode:
subset_size = 150
dataset = dataset.take(subset_size)
logger.info(f"TEST MODE: Using only {subset_size} examples")
# Recompute sizes, steps, epochs, etc., as needed
total_pairs = subset_size
train_size = int(total_pairs * (1 - validation_split))
val_size = total_pairs - train_size
batch_size = min(batch_size, val_size)
steps_per_epoch = math.ceil(train_size / batch_size)
val_steps = math.ceil(val_size / batch_size)
total_steps = steps_per_epoch * epochs
buffer_size = max(1, total_pairs // 10)
epochs = min(epochs, 5) # For quick debug
early_stopping_patience = 2
logger.info(f"New training pairs: {train_size}")
logger.info(f"New validation pairs: {val_size}")
dataset = dataset.map(
lambda x: parse_tfrecord_fn(x, self.config.max_context_token_limit, self.config.neg_samples),
num_parallel_calls=tf.data.AUTOTUNE
)
# Train/val split
train_dataset = dataset.take(train_size)
val_dataset = dataset.skip(train_size).take(val_size)
# Shuffle and batch
train_dataset = train_dataset.shuffle(buffer_size=buffer_size)
train_dataset = train_dataset.batch(batch_size, drop_remainder=True)
train_dataset = train_dataset.prefetch(tf.data.AUTOTUNE)
val_dataset = val_dataset.batch(batch_size, drop_remainder=False)
val_dataset = val_dataset.prefetch(tf.data.AUTOTUNE)
val_dataset = val_dataset.cache()
# Training loop
best_val_loss = float("inf")
epochs_no_improve = 0
for epoch in range(int(checkpoint.epoch.numpy()) + 1, epochs + 1):
checkpoint.epoch.assign(epoch)
logger.info(f"Starting Epoch {epoch}...")
# --- Training Phase ---
epoch_loss_avg = tf.keras.metrics.Mean(dtype=tf.float32)
batches_processed = 0
# Progress bar
try:
train_pbar = tqdm(
total=steps_per_epoch,
desc=f"Training Epoch {epoch}",
unit="batch"
)
is_tqdm_train = True
except ImportError:
train_pbar = None
is_tqdm_train = False
for q_batch, p_batch, n_batch in train_dataset:
loss, grad_norm, post_clip_norm = self.train_step(q_batch, p_batch, n_batch)
epoch_loss_avg(loss)
batches_processed += 1
# Log to TensorBoard
with train_summary_writer.as_default():
step = (epoch - 1) * steps_per_epoch + batches_processed
tf.summary.scalar("loss", tf.cast(loss, tf.float32), step=step)
tf.summary.scalar("gradient_norm_pre_clip", tf.cast(grad_norm, tf.float32), step=step)
tf.summary.scalar("gradient_norm_post_clip", tf.cast(post_clip_norm, tf.float32), step=step)
# Update progress bar
if use_lr_schedule:
current_lr = float(lr_schedule(self.optimizer.iterations))
else:
current_lr = float(self.optimizer.learning_rate.numpy())
if is_tqdm_train:
train_pbar.update(1)
train_pbar.set_postfix({
"loss": f"{loss.numpy():.4f}",
"pre_clip": f"{grad_norm.numpy():.2e}",
"post_clip": f"{post_clip_norm.numpy():.2e}",
"lr": f"{current_lr:.2e}",
"batches": f"{batches_processed}/{steps_per_epoch}"
})
gc.collect()
# End the epoch early if we've processed all steps
if batches_processed >= steps_per_epoch:
break
if is_tqdm_train and train_pbar:
train_pbar.close()
# --- Validation Phase ---
val_loss_avg = tf.keras.metrics.Mean(dtype=tf.float32)
val_batches_processed = 0
try:
val_pbar = tqdm(total=val_steps, desc="Validation", unit="batch")
is_tqdm_val = True
except ImportError:
val_pbar = None
is_tqdm_val = False
last_valid_val_loss = None
valid_batches = False
for q_batch, p_batch, n_batch in val_dataset:
# If batch is too small, skip
if tf.shape(q_batch)[0] < 2:
logger.warning(f"Skipping validation batch of size {tf.shape(q_batch)[0]}")
continue
valid_batches = True
val_loss = self.validation_step(q_batch, p_batch, n_batch)
val_loss_avg(val_loss)
last_valid_val_loss = val_loss
val_batches_processed += 1
if is_tqdm_val:
val_pbar.update(1)
val_pbar.set_postfix({
"val_loss": f"{val_loss.numpy():.4f}",
"batches": f"{val_batches_processed}/{val_steps}"
})
gc.collect()
if val_batches_processed >= val_steps:
break
if not valid_batches:
# If no valid batch is found, fallback
logger.warning("No valid validation batches in this epoch")
if last_valid_val_loss is not None:
val_loss = last_valid_val_loss
val_loss_avg(val_loss)
else:
val_loss = epoch_loss_avg.result()
val_loss_avg(val_loss)
if is_tqdm_val and val_pbar:
val_pbar.close()
# End of epoch: final stats
train_loss = epoch_loss_avg.result().numpy()
val_loss = val_loss_avg.result().numpy()
logger.info(f"Epoch {epoch} Complete: Train Loss={train_loss:.4f}, Val Loss={val_loss:.4f}")
# TensorBoard epoch logs
with train_summary_writer.as_default():
tf.summary.scalar("epoch_loss", train_loss, step=epoch)
with val_summary_writer.as_default():
tf.summary.scalar("val_loss", val_loss, step=epoch)
# Save checkpoint
manager.save()
# (Optional) Save model for quick testing/inference
model_save_path = Path(checkpoint_dir) / f"model_epoch_{epoch}"
self.save_models(model_save_path)
logger.info(f"Saved model for epoch {epoch} at {model_save_path}")
# Update local history
self.history['train_loss'].append(train_loss)
self.history['val_loss'].append(val_loss)
self.history.setdefault('learning_rate', []).append(current_lr)
def convert_to_py_floats(obj):
if isinstance(obj, dict):
return {k: convert_to_py_floats(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [convert_to_py_floats(x) for x in obj]
elif isinstance(obj, (np.float32, np.float64)):
return float(obj)
elif tf.is_tensor(obj):
return float(obj.numpy())
else:
return obj
json_history = convert_to_py_floats(self.history)
# Save training history to file every epoch
# (Create or overwrite the file so we always have the latest.)
with open(history_path, 'w') as f:
json.dump(json_history, f)
logger.info(f"Saved training history to {history_path}")
# Early stopping
if val_loss < best_val_loss - min_delta:
best_val_loss = val_loss
epochs_no_improve = 0
logger.info(f"Validation loss improved to {val_loss:.4f}. Reset patience.")
else:
epochs_no_improve += 1
logger.info(f"No improvement this epoch. Patience: {epochs_no_improve}/{early_stopping_patience}")
if epochs_no_improve >= early_stopping_patience:
logger.info("Early stopping triggered.")
break
logger.info("Training completed!")
@tf.function
def train_step(
self,
q_batch: tf.Tensor,
p_batch: tf.Tensor,
n_batch: tf.Tensor
) -> tf.Tensor:
"""
Single training step using queries, positives, and hard negatives.
"""
with tf.GradientTape() as tape:
# Encode queries
q_enc = self.encoder(q_batch, training=True) # [batch_size, embed_dim]
# Encode positives
p_enc = self.encoder(p_batch, training=True) # [batch_size, embed_dim]
# Encode negatives
# n_batch: [batch_size, neg_samples, max_length]
shape = tf.shape(n_batch)
bs = shape[0]
neg_samples = shape[1]
# Flatten negatives to feed them in one pass:
# => [batch_size * neg_samples, max_length]
n_batch_flat = tf.reshape(n_batch, [bs * neg_samples, shape[2]])
n_enc_flat = self.encoder(n_batch_flat, training=True) # [bs*neg_samples, embed_dim]
# Reshape back => [batch_size, neg_samples, embed_dim]
n_enc = tf.reshape(n_enc_flat, [bs, neg_samples, -1])
# Combine the positive embedding and negative embeddings along dim=1
# => shape [batch_size, 1 + neg_samples, embed_dim]
# The first column is the positive; subsequent columns are negatives
combined_p_n = tf.concat(
[tf.expand_dims(p_enc, axis=1), n_enc],
axis=1
) # [bs, (1+neg_samples), embed_dim]
# Now compute scores: dot product of q_enc with each column in combined_p_n
# We'll use `tf.einsum` to handle the batch dimension properly
# dot_products => shape [batch_size, (1+neg_samples)]
dot_products = tf.cast(tf.einsum('bd,bkd->bk', q_enc, combined_p_n), tf.float32)
labels = tf.zeros([bs], dtype=tf.int32) # Keep labels as int32
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels,
logits=dot_products
)
loss = tf.cast(tf.reduce_mean(loss), tf.float32)
# Calculate gradients
gradients = tape.gradient(loss, self.encoder.trainable_variables)
gradients_norm = tf.cast(tf.linalg.global_norm(gradients), tf.float32)
max_grad_norm = tf.constant(1.5, dtype=tf.float32)
gradients, _ = tf.clip_by_global_norm(gradients, max_grad_norm, gradients_norm)
post_clip_norm = tf.cast(tf.linalg.global_norm(gradients), tf.float32)
# Apply gradients
self.optimizer.apply_gradients(zip(gradients, self.encoder.trainable_variables))
return loss, gradients_norm, post_clip_norm
@tf.function
def validation_step(
self,
q_batch: tf.Tensor,
p_batch: tf.Tensor,
n_batch: tf.Tensor
) -> tf.Tensor:
"""
Single validation step using queries, positives, and hard negatives.
"""
q_enc = self.encoder(q_batch, training=False)
p_enc = self.encoder(p_batch, training=False)
shape = tf.shape(n_batch)
bs = shape[0]
neg_samples = shape[1]
n_batch_flat = tf.reshape(n_batch, [bs * neg_samples, shape[2]])
n_enc_flat = self.encoder(n_batch_flat, training=False)
n_enc = tf.reshape(n_enc_flat, [bs, neg_samples, -1])
combined_p_n = tf.concat(
[tf.expand_dims(p_enc, axis=1), n_enc],
axis=1
)
dot_products = tf.cast(tf.einsum('bd,bkd->bk', q_enc, combined_p_n), tf.float32)
labels = tf.zeros([bs], dtype=tf.int32) # Keep labels as int32
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels,
logits=dot_products
)
loss = tf.cast(tf.reduce_mean(loss), tf.float32)
return loss
def _get_lr_schedule(
self,
total_steps: int,
peak_lr: float,
warmup_steps: int
) -> tf.keras.optimizers.schedules.LearningRateSchedule:
"""Create a custom learning rate schedule with warmup and cosine decay."""
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
def __init__(
self,
total_steps: int,
peak_lr: float,
warmup_steps: int
):
super().__init__()
self.total_steps = tf.cast(total_steps, tf.float32)
self.peak_lr = tf.cast(peak_lr, tf.float32)
# Adjust warmup_steps to not exceed half of total_steps
adjusted_warmup_steps = min(warmup_steps, max(1, total_steps // 10))
self.warmup_steps = tf.cast(adjusted_warmup_steps, tf.float32)
# Calculate and store constants
self.initial_lr = tf.cast(self.peak_lr * 0.1, tf.float32)
self.min_lr = tf.cast(self.peak_lr * 0.01, tf.float32)
logger.info(f"Learning rate schedule initialized:")
logger.info(f" Initial LR: {float(self.initial_lr):.6f}")
logger.info(f" Peak LR: {float(self.peak_lr):.6f}")
logger.info(f" Min LR: {float(self.min_lr):.6f}")
logger.info(f" Warmup steps: {int(self.warmup_steps)}")
logger.info(f" Total steps: {int(self.total_steps)}")
def __call__(self, step):
step = tf.cast(step, tf.float32)
# Warmup phase
warmup_factor = tf.cast(tf.minimum(1.0, step / self.warmup_steps), tf.float32)
warmup_lr = self.initial_lr + (self.peak_lr - self.initial_lr) * warmup_factor
# Decay phase
decay_steps = tf.cast(tf.maximum(1.0, self.total_steps - self.warmup_steps), tf.float32)
decay_factor = tf.cast((step - self.warmup_steps) / decay_steps, tf.float32)
decay_factor = tf.cast(tf.minimum(tf.maximum(0.0, decay_factor), 1.0), tf.float32)
cosine_decay = tf.cast(0.5 * (1.0 + tf.cos(tf.constant(math.pi, dtype=tf.float32) * decay_factor)), tf.float32)
decay_lr = self.min_lr + (self.peak_lr - self.min_lr) * cosine_decay
# Choose between warmup and decay
final_lr = tf.where(step < self.warmup_steps, warmup_lr, decay_lr)
# Ensure learning rate is valid
final_lr = tf.maximum(self.min_lr, final_lr)
final_lr = tf.where(tf.math.is_finite(final_lr), final_lr, self.min_lr)
return final_lr
def get_config(self):
return {
"total_steps": self.total_steps,
"peak_lr": self.peak_lr,
"warmup_steps": self.warmup_steps,
}
return CustomSchedule(total_steps, peak_lr, warmup_steps)