File size: 52,199 Bytes
5b413d1 d53c64b f7b283c 74af405 f7b283c 9decf80 7a0020b 74af405 f7b283c 9decf80 f7b283c 9decf80 f7b283c 2183656 f7b283c 7a0020b f7b283c 74af405 7a0020b 74af405 f7b283c 74af405 f7b283c 74af405 f7b283c 74af405 f7b283c 7a0020b f7b283c 5b413d1 f7b283c 74af405 5b413d1 f7b283c d53c64b f7b283c 74af405 f7b283c 74af405 f7b283c 5b413d1 f7b283c 5b413d1 f7b283c 74af405 9b5daff 5b413d1 74af405 f7b283c 74af405 9b5daff f7b283c 5b413d1 74af405 5b413d1 74af405 5b413d1 7a0020b 5b413d1 f7b283c 5b413d1 f7b283c 5b413d1 74af405 5b413d1 74af405 5b413d1 f7b283c 5b413d1 f7b283c 5b413d1 9decf80 5b413d1 9decf80 5b413d1 9decf80 5b413d1 9decf80 5b413d1 9decf80 5b413d1 f7b283c 5b413d1 9decf80 7a0020b 5b413d1 9decf80 7a0020b 5b413d1 9decf80 7a0020b 5b413d1 9decf80 7a0020b 5b413d1 9decf80 7a0020b 5b413d1 9decf80 5b413d1 9decf80 5b413d1 7a0020b 5b413d1 9decf80 5b413d1 9decf80 5b413d1 7a0020b 5b413d1 9decf80 5b413d1 9decf80 5b413d1 9decf80 5b413d1 9decf80 5b413d1 f7b283c 5b413d1 f7b283c 7a0020b 5b413d1 f7b283c 7a0020b 5b413d1 f7b283c 5b413d1 e5be70f f7b283c 7a0020b f7b283c 7a0020b f7b283c 7a0020b f7b283c 7a0020b f7b283c 7a0020b f7b283c 7a0020b 5b413d1 7a0020b e5be70f f7b283c e5be70f 7a0020b e5be70f 7a0020b e5be70f 7a0020b e5be70f 7a0020b e5be70f 7a0020b e5be70f 7a0020b e5be70f 7a0020b e5be70f 7a0020b e5be70f 7a0020b e5be70f 7a0020b e5be70f 7a0020b e5be70f 7a0020b f7b283c 7a0020b 5b413d1 7a0020b e5be70f 7a0020b e5be70f 7a0020b e5be70f 7a0020b e5be70f 7a0020b 5b413d1 7a0020b 5b413d1 7a0020b e5be70f 7a0020b e5be70f 7a0020b e5be70f 7a0020b e5be70f 7a0020b e5be70f 7a0020b 5b413d1 7a0020b 5b413d1 7a0020b e5be70f 7a0020b e5be70f 7a0020b e5be70f f7b283c e5be70f 71ca212 e5be70f 5b413d1 7a0020b 5b413d1 f7b283c 5b413d1 f7b283c 5b413d1 f7b283c f5346f7 f7b283c 5b413d1 f7b283c 5b413d1 9decf80 d53c64b f5346f7 d53c64b 9b5daff d53c64b f5346f7 2183656 f5346f7 f7b283c d53c64b f7b283c 9decf80 2183656 9decf80 d53c64b f7b283c d53c64b f7b283c d53c64b f7b283c d53c64b 5b413d1 fc5f33b d53c64b 5b413d1 f7b283c d53c64b 5b413d1 d53c64b 7a0020b d53c64b 7a0020b d53c64b 5b413d1 d53c64b 5b413d1 d53c64b fc5f33b d53c64b 5b413d1 d53c64b 5b413d1 d53c64b 7a0020b 5b413d1 d53c64b 5b413d1 d53c64b f7b283c d53c64b f5346f7 d53c64b 5b413d1 d53c64b 5b413d1 d53c64b 5b413d1 fc5f33b 5b413d1 d53c64b 5b413d1 d53c64b f5346f7 2183656 d53c64b 5b413d1 fc5f33b 5b413d1 9decf80 f7b283c fc5f33b d53c64b 2183656 d53c64b 2183656 9decf80 d53c64b 2183656 d53c64b 2183656 5b413d1 2183656 5b413d1 d53c64b 9decf80 2183656 9decf80 2183656 d53c64b 2183656 f5346f7 2183656 f7b283c d53c64b 2183656 f7b283c 2183656 f7b283c 2183656 d53c64b 2183656 f7b283c 9decf80 2183656 d53c64b fc5f33b d53c64b 2183656 d53c64b fc5f33b d53c64b fc5f33b 2183656 fc5f33b 2183656 f5346f7 2183656 f7b283c 2183656 d53c64b fc5f33b d53c64b fc5f33b d53c64b fc5f33b d53c64b 2183656 9decf80 d53c64b 2183656 9decf80 d53c64b 2183656 9decf80 2183656 d53c64b 5b413d1 9decf80 d53c64b 2183656 5b413d1 d53c64b 2183656 f7b283c f5346f7 9decf80 2183656 f5346f7 2183656 f5346f7 2183656 9decf80 2183656 d53c64b 9decf80 2183656 9decf80 d53c64b 2183656 5b413d1 9decf80 d53c64b 5b413d1 d53c64b 5b413d1 9decf80 5b413d1 9decf80 2183656 f5346f7 2183656 f5346f7 2183656 9decf80 2183656 d53c64b 9decf80 2183656 9decf80 d53c64b 2183656 9decf80 f7b283c d53c64b f7b283c d53c64b f7b283c d53c64b f7b283c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 |
import os
import numpy as np
from transformers import TFAutoModel, AutoTokenizer
import tensorflow as tf
from typing import List, Tuple, Dict, Optional, Union, Any
import math
from dataclasses import dataclass
import json
from pathlib import Path
import datetime
import faiss
import gc
import re
from tf_data_pipeline import TFDataPipeline
from response_quality_checker import ResponseQualityChecker
from cross_encoder_reranker import CrossEncoderReranker
from conversation_summarizer import DeviceAwareModel, Summarizer
import absl.logging
from logger_config import config_logger
from tqdm.auto import tqdm
absl.logging.set_verbosity(absl.logging.WARNING)
logger = config_logger(__name__)
@dataclass
class ChatbotConfig:
"""Configuration for the RetrievalChatbot."""
max_context_token_limit: int = 512
embedding_dim: int = 768
encoder_units: int = 256
num_attention_heads: int = 8
dropout_rate: float = 0.2
l2_reg_weight: float = 0.001
learning_rate: float = 0.001
min_text_length: int = 3
max_context_turns: int = 5
warmup_steps: int = 200
pretrained_model: str = 'distilbert-base-uncased'
dtype: str = 'float32'
freeze_embeddings: bool = False
embedding_batch_size: int = 64
search_batch_size: int = 64
max_batch_size: int = 64
neg_samples: int = 10
max_retries: int = 3
def to_dict(self) -> Dict:
"""Convert config to dictionary."""
return {k: (str(v) if isinstance(v, Path) else v)
for k, v in self.__dict__.items()}
@classmethod
def from_dict(cls, config_dict: Dict) -> 'ChatbotConfig':
"""Create config from dictionary."""
return cls(**{k: v for k, v in config_dict.items()
if k in cls.__dataclass_fields__})
class EncoderModel(tf.keras.Model):
"""Dual encoder model with pretrained embeddings."""
def __init__(
self,
config: ChatbotConfig,
name: str = "encoder",
**kwargs
):
super().__init__(name=name, **kwargs)
self.config = config
# Load pretrained model and freeze layers based on config
self.pretrained = TFAutoModel.from_pretrained(config.pretrained_model)
self._freeze_layers()
# Add Pooling layer (Global Average Pooling), Projection layer, Dropout, and Normalization
self.pooler = tf.keras.layers.GlobalAveragePooling1D()
self.projection = tf.keras.layers.Dense(
config.embedding_dim,
activation='tanh',
name="projection",
dtype=tf.float32
)
self.dropout = tf.keras.layers.Dropout(config.dropout_rate)
self.normalize = tf.keras.layers.Lambda(
lambda x: tf.nn.l2_normalize(x, axis=1),
name="l2_normalize"
)
def _freeze_layers(self):
"""Freeze layers of the pretrained model based on configuration."""
if self.config.freeze_embeddings:
self.pretrained.trainable = False
logger.info("All pretrained layers frozen.")
else:
# Freeze only the first 'n' transformer layers
for i, layer in enumerate(self.pretrained.layers):
if isinstance(layer, tf.keras.layers.Layer):
if hasattr(layer, 'trainable'):
# Freeze the first transformer block
if i < 1:
layer.trainable = False
logger.info(f"Layer {i} frozen.")
else:
layer.trainable = True
def call(self, inputs: tf.Tensor, training: bool = False) -> tf.Tensor:
"""Forward pass."""
# Get pretrained embeddings
pretrained_outputs = self.pretrained(inputs, training=training)
x = pretrained_outputs.last_hidden_state # Shape: [batch_size, seq_len, embedding_dim]
# Apply pooling, projection, dropout, and normalization
x = self.pooler(x) # Shape: [batch_size, 768]
x = self.projection(x) # Shape: [batch_size, 768]
x = self.dropout(x, training=training)
x = self.normalize(x) # Shape: [batch_size, 768]
return x
def get_config(self) -> dict:
"""Return the config of the model."""
config = super().get_config()
config.update({
"config": self.config.to_dict(),
"name": self.name
})
return config
class RetrievalChatbot(DeviceAwareModel):
"""Retrieval-based chatbot using pretrained embeddings and FAISS for similarity search."""
def __init__(
self,
config: ChatbotConfig,
device: str = None,
strategy=None,
reranker: Optional[CrossEncoderReranker] = None,
summarizer: Optional[Summarizer] = None,
mode: str = 'training'
):
super().__init__()
self.config = config
self.strategy = strategy
self.device = device or self._setup_default_device()
self.mode = mode.lower()
# Initialize reranker, summarizer, tokenizer, encoder, and memory monitor
self.reranker = reranker or self._initialize_reranker()
self.tokenizer = self._initialize_tokenizer()
self.encoder = self._initialize_encoder()
self.summarizer = summarizer or self._initialize_summarizer()
# Initialize data pipeline
logger.info("Initializing TFDataPipeline.")
self.data_pipeline = TFDataPipeline(
config=self.config,
tokenizer=self.tokenizer,
encoder=self.encoder,
index_file_path='new_iteration/data_prep_iterative_models/faiss_indices/faiss_index_production.index',
response_pool=[],
max_length=self.config.max_context_token_limit,
query_embeddings_cache={},
neg_samples=self.config.neg_samples,
index_type='IndexFlatIP',
nlist=100, # Not used with IndexFlatIP
max_retries=self.config.max_retries
)
# Collect unique responses from dialogues
if self.mode == 'inference':
logger.info("Mode set to 'inference'. Loading FAISS index and response pool.")
self._load_faiss_index_and_responses()
elif self.mode != 'training':
logger.error(f"Unsupported mode in RetrievalChatbot init: {self.mode}")
raise ValueError(f"Unsupported mode in RetrievalChatbot init: {self.mode}")
# Initialize training history
self.history = {
"train_loss": [],
"val_loss": [],
"train_metrics": {},
"val_metrics": {}
}
def _setup_default_device(self) -> str:
"""Set up default device if none is provided."""
if tf.config.list_physical_devices('GPU'):
return 'GPU'
else:
return 'CPU'
def _initialize_reranker(self) -> CrossEncoderReranker:
"""Initialize the CrossEncoderReranker."""
logger.info("Initializing default CrossEncoderReranker...")
return CrossEncoderReranker(model_name="cross-encoder/ms-marco-MiniLM-L-12-v2")
def _initialize_summarizer(self) -> Summarizer:
"""Initialize the Summarizer."""
return Summarizer(
tokenizer=self.tokenizer,
model_name="t5-small",
max_summary_length=self.config.max_context_token_limit // 4,
device=self.device,
max_summary_rounds=2
)
def _initialize_tokenizer(self) -> AutoTokenizer:
"""Initialize the tokenizer and add special tokens."""
logger.info("Initializing tokenizer and adding special tokens...")
tokenizer = AutoTokenizer.from_pretrained(self.config.pretrained_model)
special_tokens = {
"user": "<USER>",
"assistant": "<ASSISTANT>",
"context": "<CONTEXT>",
"sep": "<SEP>"
}
tokenizer.add_special_tokens(
{'additional_special_tokens': list(special_tokens.values())}
)
return tokenizer
def _initialize_encoder(self) -> EncoderModel:
"""Initialize the EncoderModel and resize token embeddings."""
logger.info("Initializing encoder model...")
encoder = EncoderModel(
self.config,
name="shared_encoder",
)
new_vocab_size = len(self.tokenizer)
encoder.pretrained.resize_token_embeddings(new_vocab_size)
logger.info(f"Token embeddings resized to: {new_vocab_size}")
return encoder
def _load_faiss_index_and_responses(self) -> None:
"""Load FAISS index and response pool for inference."""
try:
logger.info(f"Loading FAISS index from {self.data_pipeline.index_file_path}...")
self.data_pipeline.load_faiss_index(self.data_pipeline.index_file_path)
logger.info("FAISS index loaded successfully.")
# Load response pool associated with the FAISS index
response_pool_path = self.data_pipeline.index_file_path.replace('.index', '_responses.json')
if os.path.exists(response_pool_path):
with open(response_pool_path, 'r', encoding='utf-8') as f:
self.data_pipeline.response_pool = json.load(f)
logger.info(f"Loaded {len(self.data_pipeline.response_pool)} responses from {response_pool_path}.")
else:
logger.error(f"Response pool file not found at {response_pool_path}.")
raise FileNotFoundError(f"Response pool file not found at {response_pool_path}.")
# Validate FAISS index and response pool
self.data_pipeline.validate_faiss_index()
logger.info("FAISS index and response pool validated successfully.")
except Exception as e:
logger.error(f"Failed to load FAISS index and response pool: {e}")
raise
@classmethod
def load_model(cls, load_dir: Union[str, Path], mode: str = 'training') -> 'RetrievalChatbot':
"""
Load saved models and configuration.
"""
load_dir = Path(load_dir)
# 1) Load config
with open(load_dir / "config.json", "r") as f:
config = ChatbotConfig.from_dict(json.load(f))
# 2) Initialize chatbot
chatbot = cls(config, mode=mode)
# 3) Load DistilBERT from huggingface folder
chatbot.encoder.pretrained = TFAutoModel.from_pretrained(
load_dir / "shared_encoder",
config=config
)
dummy_input = tf.zeros((1, config.max_context_token_limit), dtype=tf.int32)
_ = chatbot.encoder(dummy_input, training=False)
# 4) Load tokenizer
chatbot.tokenizer = AutoTokenizer.from_pretrained(load_dir / "tokenizer")
logger.info(f"Models and tokenizer loaded from {load_dir}")
# 5) Load the custom top layers' weights
custom_weights_path = load_dir / "encoder_custom_weights.weights.h5"
if custom_weights_path.exists():
chatbot.encoder.load_weights(str(custom_weights_path))
logger.info("Loaded custom encoder weights for projection/dropout/etc.")
else:
logger.warning(f"No custom encoder weights found at {custom_weights_path}. The top-level projection layer won't have learned parameters.")
# 6) If in inference mode, load FAISS, etc.
if mode == 'inference':
cls._prepare_model_for_inference(chatbot, load_dir)
return chatbot
@classmethod
def _prepare_model_for_inference(cls, chatbot: 'RetrievalChatbot', load_dir: Path) -> None:
"""Internal method to load inference components."""
try:
# Load FAISS index
faiss_path = load_dir / 'faiss_indices/faiss_index_production.index'
if faiss_path.exists():
chatbot.index = faiss.read_index(str(faiss_path))
logger.info("FAISS index loaded successfully")
else:
raise FileNotFoundError(f"FAISS index not found at {faiss_path}")
# Load response pool
response_pool_path = load_dir / 'faiss_indices/faiss_index_production_responses.json'
if response_pool_path.exists():
with open(response_pool_path, 'r') as f:
chatbot.response_pool = json.load(f)
logger.info(f"Loaded {len(chatbot.response_pool)} responses")
else:
raise FileNotFoundError(f"Response pool not found at {response_pool_path}")
# Verify dimensions match
if chatbot.index.d != chatbot.config.embedding_dim:
raise ValueError(
f"FAISS index dimension {chatbot.index.d} doesn't match "
f"model dimension {chatbot.config.embedding_dim}"
)
except Exception as e:
logger.error(f"Error loading inference components: {e}")
raise
def save_models(self, save_dir: Union[str, Path]):
"""Save models and configuration."""
save_dir = Path(save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
# Save config
with open(save_dir / "config.json", "w") as f:
json.dump(self.config.to_dict(), f, indent=2)
# Save the HF DistilBERT submodule:
self.encoder.pretrained.save_pretrained(save_dir / "shared_encoder")
# ALSO save custom top-level layers' weights
self.encoder.save_weights(save_dir / "encoder_custom_weights.weights.h5")
# Save tokenizer
self.tokenizer.save_pretrained(save_dir / "tokenizer")
logger.info(f"Models and tokenizer saved to {save_dir}.")
def sigmoid(self, x: float) -> float:
return 1 / (1 + np.exp(-x))
def retrieve_responses_cross_encoder(
self,
query: str,
top_k: int = 10,
reranker: Optional[CrossEncoderReranker] = None,
summarizer: Optional[Summarizer] = None,
summarize_threshold: int = 512
) -> List[Tuple[str, float]]:
"""
Retrieve top-k responses with optional domain-based boosting
and cross-encoder re-ranking.
Args:
query: The user's input text.
top_k: Number of final results to return.
reranker: CrossEncoderReranker for refined scoring, if available.
summarizer: Summarizer for long queries, if desired.
summarize_threshold: Summarize if query wordcount > threshold.
Returns:
List of (response_text, final_score).
"""
# 1) Optional query summarization
if summarizer and len(query.split()) > summarize_threshold:
logger.info(f"Query is long ({len(query.split())} words). Summarizing.")
query = summarizer.summarize_text(query)
logger.info(f"Summarized Query: {query}")
detected_domain = self.detect_domain_from_query(query)
#logger.debug(f"Detected domain '{detected_domain}' for query: {query}")
# Retrieve initial candidates from FAISS
initial_k = min(top_k * 10, len(self.data_pipeline.response_pool))
faiss_candidates = self.retrieve_responses_faiss(query, domain=detected_domain, top_k=initial_k)
texts = [item[0] for item in faiss_candidates]
# Re-rank these boosted candidates
if not reranker:
reranker = CrossEncoderReranker(model_name="cross-encoder/ms-marco-MiniLM-L-12-v2")
ce_scores = reranker.rerank(query, texts, max_length=256)
# Combine cross-encoder score with the base FAISS score (simple multiplicative approach)
final_candidates = []
for (resp_text, faiss_score), ce_score in zip(faiss_candidates, ce_scores):
# TODO: dial this in.
ce_prob = self.sigmoid(ce_score) # ~ relevance in [0..1]
faiss_norm = (faiss_score + 1)/2.0
combined_score = 0.9 * ce_prob + 0.1 * faiss_norm
# alpha = 0.9
# print(f'CE SCORE: {ce_score} FAISS SCORE: {faiss_score}')
# combined_score = alpha * ce_score + (1 - alpha) * faiss_score
length_adjusted_score = self.length_adjust_score(resp_text, combined_score)
#combined_score = ce_score * faiss_score
#final_candidates.append((resp_text, combined_score))
final_candidates.append((resp_text, length_adjusted_score))
# Sort descending by combined score
final_candidates.sort(key=lambda x: x[1], reverse=True)
# Return top_k
return final_candidates[:top_k]
DOMAIN_KEYWORDS = {
'restaurant': ['restaurant', 'dining', 'food', 'dine', 'reservation', 'table', 'menu', 'cuisine', 'eat', 'place to eat', 'hungry', 'chef', 'dish', 'meal', 'brunch', 'bistro', 'buffet', 'catering', 'gourmet', 'fast food', 'fine dining', 'takeaway', 'delivery', 'restaurant booking'],
'movie': ['movie', 'cinema', 'film', 'ticket', 'showtime', 'showing', 'theater', 'flick', 'screening', 'film ticket', 'film show', 'blockbuster', 'premiere', 'trailer', 'director', 'actor', 'actress', 'plot', 'genre', 'screen', 'sequel', 'animation', 'documentary'],
'ride_share': ['ride', 'taxi', 'uber', 'lyft', 'car service', 'pickup', 'dropoff', 'driver', 'cab', 'hailing', 'rideshare', 'ride hailing', 'carpool', 'chauffeur', 'transit', 'transportation', 'hail ride'],
'coffee': ['coffee', 'café', 'cafe', 'starbucks', 'espresso', 'latte', 'mocha', 'americano', 'barista', 'brew', 'cappuccino', 'macchiato', 'iced coffee', 'cold brew', 'espresso machine', 'coffee shop', 'tea', 'chai', 'java', 'bean', 'roast', 'decaf'],
'pizza': ['pizza', 'delivery', 'order food', 'pepperoni', 'topping', 'pizzeria', 'slice', 'pie', 'margherita', 'deep dish', 'thin crust', 'cheese', 'oven', 'tossed', 'sauce', 'garlic bread', 'calzone'],
'auto': ['car', 'vehicle', 'repair', 'maintenance', 'mechanic', 'oil change', 'garage', 'auto shop', 'tire', 'check engine', 'battery', 'transmission', 'brake', 'engine diagnostics', 'carwash', 'detail', 'alignment', 'exhaust', 'spark plug', 'dashboard'],
}
def extract_keywords(self, query: str) -> List[str]:
"""
Return any domain keywords present in the query (lowercased).
"""
query_lower = query.lower()
found = set()
for domain, kw_list in self.DOMAIN_KEYWORDS.items():
for kw in kw_list:
if kw in query_lower:
found.add(kw)
return list(found)
def length_adjust_score(self, text: str, base_score: float) -> float:
"""
Penalize very short lines or numeric lines; mildly reward longer lines.
Adjust carefully so you don't overshadow cross-encoder signals.
"""
words = text.split()
wcount = len(words)
# Penalty if under 3 words
if wcount < 4:
return base_score * 0.8
# Bonus for lines > 12 words
if wcount > 12:
extra = min(wcount - 12, 8)
bonus = 0.0005 * extra
base_score += bonus
return base_score
def detect_domain_from_query(self, query: str) -> str:
"""
Detect the domain of the query based on keywords.
"""
domain_patterns = {
'restaurant': r'\b(restaurant|restaurants?|dining|food|foods?|dine|reservation|reservations?|table|tables?|menu|menus?|cuisine|cuisines?|eat|eats?|place\s?to\s?eat|places\s?to\s?eat|hungry|chef|chefs?|dish|dishes?|meal|meals?|fork|forks?|knife|knives?|spoon|spoons?|brunch|bistro|buffet|buffets?|catering|caterings?|gourmet|fast\s?food|fine\s?dining|takeaway|takeaways?|delivery|deliveries|restaurant\s?booking)\b',
'movie': r'\b(movie|movies?|cinema|cinemas?|film|films?|ticket|tickets?|showtime|showtimes?|showing|showings?|theater|theaters?|flick|flicks?|screening|screenings?|film\s?ticket|film\s?tickets?|film\s?show|film\s?shows?|blockbuster|blockbusters?|premiere|premieres?|trailer|trailers?|director|directors?|actor|actors?|actress|actresses?|plot|plots?|genre|genres?|screen|screens?|sequel|sequels?|animation|animations?|documentary|documentaries)\b',
'ride_share': r'\b(ride|rides?|taxi|taxis?|uber|lyft|car\s?service|car\s?services?|pickup|pickups?|dropoff|dropoffs?|driver|drivers?|cab|cabs?|hailing|hailings?|rideshare|rideshares?|ride\s?hailing|ride\s?hailings?|carpool|carpools?|chauffeur|chauffeurs?|transit|transits?|transportation|transportations?|hail\s?ride|hail\s?rides?)\b',
'coffee': r'\b(coffee|coffees?|café|cafés?|cafe|cafes?|starbucks|espresso|espressos?|latte|lattes?|mocha|mochas?|americano|americanos?|barista|baristas?|brew|brews?|cappuccino|cappuccinos?|macchiato|macchiatos?|iced\s?coffee|iced\s?coffees?|cold\s?brew|cold\s?brews?|espresso\s?machine|espresso\s?machines?|coffee\s?shop|coffee\s?shops?|tea|teas?|chai|chais?|java|javas?|bean|beans?|roast|roasts?|decaf)\b',
'pizza': r'\b(pizza|pizzas?|delivery|deliveries|order\s?food|order\s?foods?|pepperoni|pepperonis?|topping|toppings?|pizzeria|pizzerias?|slice|slices?|pie|pies?|margherita|margheritas?|deep\s?dish|deep\s?dishes?|thin\s?crust|thin\s?crusts?|cheese|cheeses?|oven|ovens?|tossed|tosses?|sauce|sauces?|garlic\s?bread|garlic\s?breads?|calzone|calzones?)\b',
'auto': r'\b(car|cars?|vehicle|vehicles?|repair|repairs?|maintenance|maintenances?|mechanic|mechanics?|oil\s?change|oil\s?changes?|garage|garages?|auto\s?shop|auto\s?shops?|tire|tires?|check\s?engine|check\s?engines?|battery|batteries?|transmission|transmissions?|brake|brakes?|engine\s?diagnostics|engine\s?diagnostic|carwash|carwashes?|detail|details?|alignment|alignments?|exhaust|exhausts?|spark\s?plug|spark\s?plugs?|dashboard|dashboards?)\b',
}
# Check for matches
for domain, pattern in domain_patterns.items():
if re.search(pattern, query.lower()):
return domain
return 'other'
def is_numeric_response(self, text: str) -> bool:
"""
Return True if `text` is purely digits (and/or spaces),
with optional punctuation like '.' at the end.
"""
pattern = r'^[\s]*[\d]+([\s.,\d]+)*[\s]*$'
return bool(re.match(pattern, text.strip()))
def retrieve_responses_faiss(
self,
query: str,
domain: str = 'other',
top_k: int = 5,
boost_factor: float = 1.05
) -> List[Tuple[str, float]]:
"""
Retrieve top-k responses from the FAISS index (IndexFlatIP) given a user query.
Args:
query (str): The user input text.
domain (str, optional): The detected domain. Defaults to 'other'.
top_k (int, optional): Number of top results to return. Defaults to 5.
boost_factor (float, optional): Factor to boost scores for keyword matches. Defaults to 1.3.
Returns:
List[Tuple[str, float]]: List of (response_text, similarity) sorted by descending similarity.
"""
# Encode the query
q_emb = self.data_pipeline.encode_query(query)
q_emb_np = q_emb.reshape(1, -1).astype('float32')
# Search the index
distances, indices = self.data_pipeline.index.search(q_emb_np, top_k * 10)
# IndexFlatIP: 'distances' are inner products (cosine similarities for normalized vectors)
candidates = []
for rank, idx in enumerate(indices[0]):
if idx < 0:
continue
response = self.data_pipeline.response_pool[idx]
text = response.get('text', '').strip()
cand_domain = response.get('domain', 'other')
score = distances[0][rank]
# Skip purely numeric or extremely short text (fewer than 3 words):
words = text.split()
if len(words) < 4:
continue
if self.is_numeric_response(text):
continue
candidates.append((text, cand_domain, score))
if not candidates:
logger.warning("No valid candidates found after initial numeric/length filtering.")
return []
# Sort candidates by score descending
candidates.sort(key=lambda x: x[2], reverse=True)
# Filter in-domain responses
in_domain = [c for c in candidates if c[1] == domain]
if not in_domain:
logger.info(f"No in-domain responses found for '{domain}'. Using all candidates.")
in_domain = candidates
# Boost responses containing query keywords
query_keywords = self.extract_keywords(query)
boosted = []
for (resp_text, resp_domain, score) in in_domain:
new_score = score
# If the domain is known AND the response text
# shares any query keywords, apply a small boost
if query_keywords and any(kw in resp_text.lower() for kw in query_keywords):
new_score *= boost_factor
#logger.debug(f"Boosting response: '{resp_text}' by factor {boost_factor}")
# Apply length penalty/bonus
new_score = self.length_adjust_score(resp_text, new_score)
boosted.append((resp_text, new_score))
# Sort boosted responses
boosted.sort(key=lambda x: x[1], reverse=True)
# Print top 10
for resp, score in boosted[:150]:
logger.debug(f"Candidate: '{resp}' with score {score}")
# 8) Return top_k
return boosted[:top_k]
def chat(
self,
query: str,
conversation_history: Optional[List[Tuple[str, str]]] = None,
quality_checker: Optional['ResponseQualityChecker'] = None,
top_k: int = 10,
) -> Tuple[str, List[Tuple[str, float]], Dict[str, Any]]:
"""
Example chat method that always uses cross-encoder re-ranking
if self.reranker is available.
"""
@self.run_on_device
def get_response(self_arg, query_arg):
# 1) Build conversation context string
conversation_str = self_arg._build_conversation_context(query_arg, conversation_history)
# 2) Retrieve + cross-encoder re-rank
results = self_arg.retrieve_responses_cross_encoder(
query=conversation_str,
top_k=top_k,
reranker=self_arg.reranker,
summarizer=self_arg.summarizer,
summarize_threshold=512
)
# 3) Handle empty or confidence
if not results:
return (
"I'm sorry, but I couldn't find a relevant response.",
[],
{}
)
if quality_checker:
metrics = quality_checker.check_response_quality(query_arg, results)
if not metrics.get('is_confident', False):
return (
"I need more information to provide a good answer. Could you please clarify?",
results,
metrics
)
return results[0][0], results, metrics
return results[0][0], results, {}
return get_response(self, query)
def _build_conversation_context(
self,
query: str,
conversation_history: Optional[List[Tuple[str, str]]]
) -> str:
"""Build conversation context with better memory management."""
if not conversation_history:
return f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<USER>')]} {query}"
conversation_parts = []
for user_txt, assistant_txt in conversation_history:
conversation_parts.extend([
f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<USER>')]} {user_txt}",
f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<ASSISTANT>')]} {assistant_txt}"
])
conversation_parts.append(f"{self.tokenizer.additional_special_tokens[self.tokenizer.additional_special_tokens.index('<USER>')]} {query}")
return "\n".join(conversation_parts)
def train_model(
self,
tfrecord_file_path: str,
epochs: int = 20,
batch_size: int = 16,
validation_split: float = 0.2,
checkpoint_dir: str = "checkpoints/",
use_lr_schedule: bool = True,
peak_lr: float = 1e-5,
warmup_steps_ratio: float = 0.1,
early_stopping_patience: int = 3,
min_delta: float = 1e-4,
test_mode: bool = False,
initial_epoch: int = 0
) -> None:
"""
Train the retrieval model using a pre-prepared TFRecord dataset.
This method handles:
- Checkpoint loading/restoring
- LR scheduling
- Epoch/iteration tracking
- Optional training-history logging
- Basic early stopping
"""
logger.info("Starting training with pre-prepared TFRecord dataset...")
def parse_tfrecord_fn(example_proto, max_length, neg_samples):
"""
Parses a single TFRecord example.
"""
feature_description = {
'query_ids': tf.io.FixedLenFeature([max_length], tf.int64),
'positive_ids': tf.io.FixedLenFeature([max_length], tf.int64),
'negative_ids': tf.io.FixedLenFeature([neg_samples * max_length], tf.int64),
}
parsed_features = tf.io.parse_single_example(example_proto, feature_description)
query_ids = tf.cast(parsed_features['query_ids'], tf.int32)
positive_ids = tf.cast(parsed_features['positive_ids'], tf.int32)
negative_ids = tf.cast(parsed_features['negative_ids'], tf.int32)
negative_ids = tf.reshape(negative_ids, [neg_samples, max_length])
return query_ids, positive_ids, negative_ids
# Count total records in TFRecord
raw_dataset = tf.data.TFRecordDataset(tfrecord_file_path)
total_pairs = sum(1 for _ in raw_dataset)
logger.info(f"Total pairs in TFRecord: {total_pairs}")
train_size = int(total_pairs * (1 - validation_split))
val_size = total_pairs - train_size
steps_per_epoch = math.ceil(train_size / batch_size)
val_steps = math.ceil(val_size / batch_size)
total_steps = steps_per_epoch * epochs
buffer_size = max(1, total_pairs // 10) # 10% of the dataset
logger.info(f"Training pairs: {train_size}")
logger.info(f"Validation pairs: {val_size}")
logger.info(f"Steps per epoch: {steps_per_epoch}")
logger.info(f"Validation steps: {val_steps}")
logger.info(f"Total steps: {total_steps}")
# Set up optimizer & LR schedule
if use_lr_schedule:
warmup_steps = int(total_steps * warmup_steps_ratio)
lr_schedule = self._get_lr_schedule(
total_steps=total_steps,
peak_lr=tf.cast(peak_lr, tf.float32),
warmup_steps=warmup_steps
)
self.optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
logger.info("Using custom learning rate schedule.")
else:
self.optimizer = tf.keras.optimizers.Adam(learning_rate=tf.cast(peak_lr, tf.float32))
logger.info("Using fixed learning rate.")
# Initialize optimizer with dummy step
dummy_input = tf.zeros((1, self.config.max_context_token_limit), dtype=tf.int32)
with tf.GradientTape() as tape:
dummy_output = self.encoder(dummy_input)
dummy_loss = tf.cast(tf.reduce_mean(dummy_output), tf.float32)
dummy_grads = tape.gradient(dummy_loss, self.encoder.trainable_variables)
self.optimizer.apply_gradients(zip(dummy_grads, self.encoder.trainable_variables))
# Create checkpoint and manager
checkpoint = tf.train.Checkpoint(
epoch=tf.Variable(0, dtype=tf.int32),
optimizer=self.optimizer,
model=self.encoder
)
manager = tf.train.CheckpointManager(
checkpoint,
directory=checkpoint_dir,
max_to_keep=3,
checkpoint_name='ckpt'
)
# Restore from existing checkpoint if present
latest_checkpoint = manager.latest_checkpoint
history_path = Path(checkpoint_dir) / 'training_history.json'
# If you want to log all epoch losses across runs
if not hasattr(self, 'history'):
self.history = {'train_loss': [], 'val_loss': [], 'learning_rate': []}
if latest_checkpoint and not test_mode:
# Add checkpoint inspection
logger.info(f"\nTrying to load checkpoint from: {latest_checkpoint}")
reader = tf.train.load_checkpoint(latest_checkpoint)
# shape_from_key = reader.get_variable_to_shape_map()
# dtype_from_key = reader.get_variable_to_dtype_map()
# logger.info("\nCheckpoint Variables:")
# for key in shape_from_key:
# logger.info(f"{key}: dtype={dtype_from_key[key]} - Shape: {shape_from_key[key]}")
status = checkpoint.restore(latest_checkpoint)
status.assert_consumed()
logger.info(f"Restored from checkpoint: {latest_checkpoint}")
logger.info(f"Optimizer iterations after restore: {self.optimizer.iterations.numpy()}")
# Verify learning rate after restore
if use_lr_schedule:
current_lr = float(lr_schedule(self.optimizer.iterations))
else:
current_lr = float(self.optimizer.learning_rate.numpy())
logger.info(f"Current learning rate after restore: {current_lr:.2e}")
# Derive initial_epoch from checkpoint name if not passed in
ckpt_number = int(latest_checkpoint.split('ckpt-')[-1])
if initial_epoch == 0:
initial_epoch = ckpt_number
# Assign to checkpoint.epoch so we keep counting from that
checkpoint.epoch.assign(tf.cast(initial_epoch, tf.int32))
logger.info(f"Resuming from epoch {initial_epoch}")
# If you want to load old history from file:
if history_path.exists():
try:
with open(history_path, 'r') as f:
self.history = json.load(f)
logger.info(f"Loaded previous training history from {history_path}")
except Exception as e:
logger.warning(f"Could not load history, starting fresh: {e}")
# Fix for custom weights not being saved in the full model.
self.save_models(Path(checkpoint_dir) / "pretrained_full_model")
logger.info(f"Manually saved custom weights after restore.")
else:
logger.info("Starting training from scratch")
checkpoint.epoch.assign(tf.cast(0, tf.int32))
initial_epoch = 0
# Set up TensorBoard
log_dir = Path(checkpoint_dir) / "tensorboard_logs"
log_dir.mkdir(parents=True, exist_ok=True)
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
train_log_dir = str(log_dir / f"train_{current_time}")
val_log_dir = str(log_dir / f"val_{current_time}")
train_summary_writer = tf.summary.create_file_writer(train_log_dir)
val_summary_writer = tf.summary.create_file_writer(val_log_dir)
logger.info(f"TensorBoard logs will be saved in {log_dir}")
# Parse dataset
dataset = tf.data.TFRecordDataset(tfrecord_file_path)
# Optional: test/debug mode with small subset
if test_mode:
subset_size = 150
dataset = dataset.take(subset_size)
logger.info(f"TEST MODE: Using only {subset_size} examples")
# Recompute sizes, steps, epochs, etc., as needed
total_pairs = subset_size
train_size = int(total_pairs * (1 - validation_split))
val_size = total_pairs - train_size
batch_size = min(batch_size, val_size)
steps_per_epoch = math.ceil(train_size / batch_size)
val_steps = math.ceil(val_size / batch_size)
total_steps = steps_per_epoch * epochs
buffer_size = max(1, total_pairs // 10)
epochs = min(epochs, 5) # For quick debug
early_stopping_patience = 2
logger.info(f"New training pairs: {train_size}")
logger.info(f"New validation pairs: {val_size}")
dataset = dataset.map(
lambda x: parse_tfrecord_fn(x, self.config.max_context_token_limit, self.config.neg_samples),
num_parallel_calls=tf.data.AUTOTUNE
)
# Train/val split
train_dataset = dataset.take(train_size)
val_dataset = dataset.skip(train_size).take(val_size)
# Shuffle and batch
train_dataset = train_dataset.shuffle(buffer_size=buffer_size)
train_dataset = train_dataset.batch(batch_size, drop_remainder=True)
train_dataset = train_dataset.prefetch(tf.data.AUTOTUNE)
val_dataset = val_dataset.batch(batch_size, drop_remainder=False)
val_dataset = val_dataset.prefetch(tf.data.AUTOTUNE)
val_dataset = val_dataset.cache()
# Training loop
best_val_loss = float("inf")
epochs_no_improve = 0
for epoch in range(int(checkpoint.epoch.numpy()) + 1, epochs + 1):
checkpoint.epoch.assign(epoch)
logger.info(f"Starting Epoch {epoch}...")
# --- Training Phase ---
epoch_loss_avg = tf.keras.metrics.Mean(dtype=tf.float32)
batches_processed = 0
# Progress bar
try:
train_pbar = tqdm(
total=steps_per_epoch,
desc=f"Training Epoch {epoch}",
unit="batch"
)
is_tqdm_train = True
except ImportError:
train_pbar = None
is_tqdm_train = False
for q_batch, p_batch, n_batch in train_dataset:
loss, grad_norm, post_clip_norm = self.train_step(q_batch, p_batch, n_batch)
epoch_loss_avg(loss)
batches_processed += 1
# Log to TensorBoard
with train_summary_writer.as_default():
step = (epoch - 1) * steps_per_epoch + batches_processed
tf.summary.scalar("loss", tf.cast(loss, tf.float32), step=step)
tf.summary.scalar("gradient_norm_pre_clip", tf.cast(grad_norm, tf.float32), step=step)
tf.summary.scalar("gradient_norm_post_clip", tf.cast(post_clip_norm, tf.float32), step=step)
# Update progress bar
if use_lr_schedule:
current_lr = float(lr_schedule(self.optimizer.iterations))
else:
current_lr = float(self.optimizer.learning_rate.numpy())
if is_tqdm_train:
train_pbar.update(1)
train_pbar.set_postfix({
"loss": f"{loss.numpy():.4f}",
"pre_clip": f"{grad_norm.numpy():.2e}",
"post_clip": f"{post_clip_norm.numpy():.2e}",
"lr": f"{current_lr:.2e}",
"batches": f"{batches_processed}/{steps_per_epoch}"
})
gc.collect()
# End the epoch early if we've processed all steps
if batches_processed >= steps_per_epoch:
break
if is_tqdm_train and train_pbar:
train_pbar.close()
# --- Validation Phase ---
val_loss_avg = tf.keras.metrics.Mean(dtype=tf.float32)
val_batches_processed = 0
try:
val_pbar = tqdm(total=val_steps, desc="Validation", unit="batch")
is_tqdm_val = True
except ImportError:
val_pbar = None
is_tqdm_val = False
last_valid_val_loss = None
valid_batches = False
for q_batch, p_batch, n_batch in val_dataset:
# If batch is too small, skip
if tf.shape(q_batch)[0] < 2:
logger.warning(f"Skipping validation batch of size {tf.shape(q_batch)[0]}")
continue
valid_batches = True
val_loss = self.validation_step(q_batch, p_batch, n_batch)
val_loss_avg(val_loss)
last_valid_val_loss = val_loss
val_batches_processed += 1
if is_tqdm_val:
val_pbar.update(1)
val_pbar.set_postfix({
"val_loss": f"{val_loss.numpy():.4f}",
"batches": f"{val_batches_processed}/{val_steps}"
})
gc.collect()
if val_batches_processed >= val_steps:
break
if not valid_batches:
# If no valid batch is found, fallback
logger.warning("No valid validation batches in this epoch")
if last_valid_val_loss is not None:
val_loss = last_valid_val_loss
val_loss_avg(val_loss)
else:
val_loss = epoch_loss_avg.result()
val_loss_avg(val_loss)
if is_tqdm_val and val_pbar:
val_pbar.close()
# End of epoch: final stats
train_loss = epoch_loss_avg.result().numpy()
val_loss = val_loss_avg.result().numpy()
logger.info(f"Epoch {epoch} Complete: Train Loss={train_loss:.4f}, Val Loss={val_loss:.4f}")
# TensorBoard epoch logs
with train_summary_writer.as_default():
tf.summary.scalar("epoch_loss", train_loss, step=epoch)
with val_summary_writer.as_default():
tf.summary.scalar("val_loss", val_loss, step=epoch)
# Save checkpoint
manager.save()
# (Optional) Save model for quick testing/inference
model_save_path = Path(checkpoint_dir) / f"model_epoch_{epoch}"
self.save_models(model_save_path)
logger.info(f"Saved model for epoch {epoch} at {model_save_path}")
# Update local history
self.history['train_loss'].append(train_loss)
self.history['val_loss'].append(val_loss)
self.history.setdefault('learning_rate', []).append(current_lr)
def convert_to_py_floats(obj):
if isinstance(obj, dict):
return {k: convert_to_py_floats(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [convert_to_py_floats(x) for x in obj]
elif isinstance(obj, (np.float32, np.float64)):
return float(obj)
elif tf.is_tensor(obj):
return float(obj.numpy())
else:
return obj
json_history = convert_to_py_floats(self.history)
# Save training history to file every epoch
# (Create or overwrite the file so we always have the latest.)
with open(history_path, 'w') as f:
json.dump(json_history, f)
logger.info(f"Saved training history to {history_path}")
# Early stopping
if val_loss < best_val_loss - min_delta:
best_val_loss = val_loss
epochs_no_improve = 0
logger.info(f"Validation loss improved to {val_loss:.4f}. Reset patience.")
else:
epochs_no_improve += 1
logger.info(f"No improvement this epoch. Patience: {epochs_no_improve}/{early_stopping_patience}")
if epochs_no_improve >= early_stopping_patience:
logger.info("Early stopping triggered.")
break
logger.info("Training completed!")
@tf.function
def train_step(
self,
q_batch: tf.Tensor,
p_batch: tf.Tensor,
n_batch: tf.Tensor
) -> tf.Tensor:
"""
Single training step using queries, positives, and hard negatives.
"""
with tf.GradientTape() as tape:
# Encode queries
q_enc = self.encoder(q_batch, training=True) # [batch_size, embed_dim]
# Encode positives
p_enc = self.encoder(p_batch, training=True) # [batch_size, embed_dim]
# Encode negatives
# n_batch: [batch_size, neg_samples, max_length]
shape = tf.shape(n_batch)
bs = shape[0]
neg_samples = shape[1]
# Flatten negatives to feed them in one pass:
# => [batch_size * neg_samples, max_length]
n_batch_flat = tf.reshape(n_batch, [bs * neg_samples, shape[2]])
n_enc_flat = self.encoder(n_batch_flat, training=True) # [bs*neg_samples, embed_dim]
# Reshape back => [batch_size, neg_samples, embed_dim]
n_enc = tf.reshape(n_enc_flat, [bs, neg_samples, -1])
# Combine the positive embedding and negative embeddings along dim=1
# => shape [batch_size, 1 + neg_samples, embed_dim]
# The first column is the positive; subsequent columns are negatives
combined_p_n = tf.concat(
[tf.expand_dims(p_enc, axis=1), n_enc],
axis=1
) # [bs, (1+neg_samples), embed_dim]
# Now compute scores: dot product of q_enc with each column in combined_p_n
# We'll use `tf.einsum` to handle the batch dimension properly
# dot_products => shape [batch_size, (1+neg_samples)]
dot_products = tf.cast(tf.einsum('bd,bkd->bk', q_enc, combined_p_n), tf.float32)
labels = tf.zeros([bs], dtype=tf.int32) # Keep labels as int32
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels,
logits=dot_products
)
loss = tf.cast(tf.reduce_mean(loss), tf.float32)
# Calculate gradients
gradients = tape.gradient(loss, self.encoder.trainable_variables)
gradients_norm = tf.cast(tf.linalg.global_norm(gradients), tf.float32)
max_grad_norm = tf.constant(1.5, dtype=tf.float32)
gradients, _ = tf.clip_by_global_norm(gradients, max_grad_norm, gradients_norm)
post_clip_norm = tf.cast(tf.linalg.global_norm(gradients), tf.float32)
# Apply gradients
self.optimizer.apply_gradients(zip(gradients, self.encoder.trainable_variables))
return loss, gradients_norm, post_clip_norm
@tf.function
def validation_step(
self,
q_batch: tf.Tensor,
p_batch: tf.Tensor,
n_batch: tf.Tensor
) -> tf.Tensor:
"""
Single validation step using queries, positives, and hard negatives.
"""
q_enc = self.encoder(q_batch, training=False)
p_enc = self.encoder(p_batch, training=False)
shape = tf.shape(n_batch)
bs = shape[0]
neg_samples = shape[1]
n_batch_flat = tf.reshape(n_batch, [bs * neg_samples, shape[2]])
n_enc_flat = self.encoder(n_batch_flat, training=False)
n_enc = tf.reshape(n_enc_flat, [bs, neg_samples, -1])
combined_p_n = tf.concat(
[tf.expand_dims(p_enc, axis=1), n_enc],
axis=1
)
dot_products = tf.cast(tf.einsum('bd,bkd->bk', q_enc, combined_p_n), tf.float32)
labels = tf.zeros([bs], dtype=tf.int32) # Keep labels as int32
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels,
logits=dot_products
)
loss = tf.cast(tf.reduce_mean(loss), tf.float32)
return loss
def _get_lr_schedule(
self,
total_steps: int,
peak_lr: float,
warmup_steps: int
) -> tf.keras.optimizers.schedules.LearningRateSchedule:
"""Create a custom learning rate schedule with warmup and cosine decay."""
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
def __init__(
self,
total_steps: int,
peak_lr: float,
warmup_steps: int
):
super().__init__()
self.total_steps = tf.cast(total_steps, tf.float32)
self.peak_lr = tf.cast(peak_lr, tf.float32)
# Adjust warmup_steps to not exceed half of total_steps
adjusted_warmup_steps = min(warmup_steps, max(1, total_steps // 10))
self.warmup_steps = tf.cast(adjusted_warmup_steps, tf.float32)
# Calculate and store constants
self.initial_lr = tf.cast(self.peak_lr * 0.1, tf.float32)
self.min_lr = tf.cast(self.peak_lr * 0.01, tf.float32)
logger.info(f"Learning rate schedule initialized:")
logger.info(f" Initial LR: {float(self.initial_lr):.6f}")
logger.info(f" Peak LR: {float(self.peak_lr):.6f}")
logger.info(f" Min LR: {float(self.min_lr):.6f}")
logger.info(f" Warmup steps: {int(self.warmup_steps)}")
logger.info(f" Total steps: {int(self.total_steps)}")
def __call__(self, step):
step = tf.cast(step, tf.float32)
# Warmup phase
warmup_factor = tf.cast(tf.minimum(1.0, step / self.warmup_steps), tf.float32)
warmup_lr = self.initial_lr + (self.peak_lr - self.initial_lr) * warmup_factor
# Decay phase
decay_steps = tf.cast(tf.maximum(1.0, self.total_steps - self.warmup_steps), tf.float32)
decay_factor = tf.cast((step - self.warmup_steps) / decay_steps, tf.float32)
decay_factor = tf.cast(tf.minimum(tf.maximum(0.0, decay_factor), 1.0), tf.float32)
cosine_decay = tf.cast(0.5 * (1.0 + tf.cos(tf.constant(math.pi, dtype=tf.float32) * decay_factor)), tf.float32)
decay_lr = self.min_lr + (self.peak_lr - self.min_lr) * cosine_decay
# Choose between warmup and decay
final_lr = tf.where(step < self.warmup_steps, warmup_lr, decay_lr)
# Ensure learning rate is valid
final_lr = tf.maximum(self.min_lr, final_lr)
final_lr = tf.where(tf.math.is_finite(final_lr), final_lr, self.min_lr)
return final_lr
def get_config(self):
return {
"total_steps": self.total_steps,
"peak_lr": self.peak_lr,
"warmup_steps": self.warmup_steps,
}
return CustomSchedule(total_steps, peak_lr, warmup_steps)
|