csc525_retrieval_based_chatbot / processing_pipeline.py
JoeArmani
updates through 4th iteration
300fe5d
raw
history blame
12.9 kB
from datetime import datetime
from pathlib import Path
from typing import List, Dict, Optional
import json
import re
import hashlib
import spacy
import torch
from tqdm import tqdm
from pipeline_config import PipelineConfig
from dialogue_augmenter import DialogueAugmenter
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from typing import Set
class ProcessingPipeline:
"""
Complete pipeline combining validation, optimization, and augmentation.
"""
def __init__(self, config: Optional[PipelineConfig] = None):
self.config = config or PipelineConfig()
self.nlp = spacy.load("en_core_web_sm", disable=['parser', 'ner'])
self.augmenter = DialogueAugmenter(self.nlp, self.config)
self.num_threads = self.config.batch_size
self.cache_dir = Path("./cache")
self.cache_dir.mkdir(exist_ok=True)
self.output_dir = Path("processed_outputs")
self.output_dir.mkdir(exist_ok=True)
self.checkpoint_file = self.output_dir / "processing_checkpoint.json"
self.batch_size = self.config.batch_size
self.use_gpu = torch.cuda.is_available()
self.batch_size = 32 if self.use_gpu else 8
self.use_multiprocessing = not self.use_gpu
# Counters for grouping batches
self.batch_counter = 0 # Count batches since last group combine
self.batch_group_number = 0 # How many groups have been created
if self.config.debug:
print(f"ProcessingPipeline initialized with:")
print(f"- GPU available: {self.use_gpu}")
print(f"- Batch size: {self.batch_size}")
print(f"- Using multiprocessing: {self.use_multiprocessing}")
def _save_batch(self, batch_results: List[Dict], batch_num: int) -> Path:
"""Save a batch of results to a separate JSON file"""
batch_file = self.output_dir / f"batch_{batch_num:04d}.json"
with open(batch_file, 'w') as f:
json.dump(batch_results, f)
return batch_file
def _load_checkpoint(self) -> set:
"""Load set of processed dialogue IDs from checkpoint"""
if self.checkpoint_file.exists():
with open(self.checkpoint_file, 'r') as f:
return set(json.load(f))
return set()
def _update_checkpoint(self, processed_ids: set):
"""Update checkpoint with newly processed IDs"""
with open(self.checkpoint_file, 'w') as f:
json.dump(list(processed_ids), f)
def _process_batch(self, batch: List[Dict]) -> List[Dict]:
"""Process batch with optimized model calls"""
results = []
try:
if self.use_gpu:
results = self.augmenter.process_batch(batch)
else:
# Collect all texts that need processing
all_texts = []
text_to_dialogue_map = {}
for dialogue in batch:
for turn in dialogue['turns']:
all_texts.append(turn['text'])
text_to_dialogue_map[turn['text']] = dialogue['dialogue_id']
# Batch process embeddings
self.augmenter._compute_batch_embeddings(all_texts)
# Process dialogues with cached embeddings
for dialogue in batch:
try:
augmented = self.augmenter.augment_dialogue(dialogue)
results.extend(augmented)
except Exception as e:
print(f"Error processing dialogue {dialogue.get('dialogue_id', 'unknown')}: {str(e)}")
continue
except Exception as e:
print(f"Error processing batch: {str(e)}")
return results
def _combine_intermediate_batches(self):
"""
Combine all current batch_*.json files into a single batch_group_XXXX.json file,
then remove the batch_*.json files.
"""
batch_files = sorted(self.output_dir.glob("batch_*.json"))
if not batch_files:
return None # No files to combine
combined_data = []
for bf in batch_files:
with open(bf, 'r') as f:
combined_data.extend(json.load(f))
bf.unlink() # Remove the individual batch file after reading
self.batch_group_number += 1
group_file = self.output_dir / f"batch_group_{self.batch_group_number:04d}.json"
with open(group_file, 'w') as f:
json.dump(combined_data, f)
return group_file
def combine_results(self) -> Path:
"""Combine all batch_group_*.json files into final output"""
all_results = []
group_files = sorted(self.output_dir.glob("batch_group_*.json"))
print(f"Combining {len(group_files)} group files...")
for group_file in tqdm(group_files):
with open(group_file, 'r') as f:
group_data = json.load(f)
all_results.extend(group_data)
# Save combined results
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
final_output = self.output_dir / f"augmented_dataset_{timestamp}.json"
with open(final_output, 'w') as f:
json.dump(all_results, f)
if self.config.debug:
print(f"Combined {len(all_results)} dialogues into {final_output}")
return final_output
def process_dataset(self, dialogues: List[Dict]) -> Path:
"""Process dataset with hardware-appropriate optimizations and progress tracking"""
processed_ids = self._load_checkpoint()
# Filter out already processed dialogues
remaining_dialogues = [d for d in dialogues
if d['dialogue_id'] not in processed_ids]
total_dialogues = len(dialogues)
remaining_count = len(remaining_dialogues)
processed_count = total_dialogues - remaining_count
print("\nDataset Processing Status:")
print(f"Total dialogues in dataset: {total_dialogues}")
print(f"Previously processed: {processed_count}")
print(f"Remaining to process: {remaining_count}")
print("-" * 50)
# Process in batches with progress bar
for batch_num in tqdm(range(0, len(remaining_dialogues), self.batch_size),
desc="Processing batches",
total=(len(remaining_dialogues) + self.batch_size - 1) // self.batch_size):
batch = remaining_dialogues[batch_num:batch_num + self.batch_size]
current_position = processed_count + batch_num + len(batch)
total_progress = (current_position / total_dialogues) * 100
print('\033[K', end='')
print(f"Processing: {current_position}/{total_dialogues} dialogues "
f"({total_progress:.1f}% complete)")
print(f"Current batch: {batch_num//self.batch_size + 1} of "
f"{(len(remaining_dialogues) + self.batch_size - 1) // self.batch_size}")
print("-" * 50)
# Process batch
batch_results = self._process_batch(batch)
if batch_results:
self._save_batch(batch_results, batch_num)
batch_ids = {d['dialogue_id'] for d in batch}
processed_ids.update(batch_ids)
self._update_checkpoint(processed_ids)
# Increment batch counter and combine if needed
self.batch_counter += 1
if self.batch_counter == 25:
# Combine these 25 batches into a group file
self._combine_intermediate_batches()
self.batch_counter = 0 # Reset counter after grouping
# If there are leftover batches less than 25
# combine them into one final group file
if self.batch_counter > 0:
self._combine_intermediate_batches()
self.batch_counter = 0
print("\n" + "-" * 50)
print("Processing complete. Combining results...")
return self.combine_results()
def cleanup(self):
"""Clean up intermediate files after successful processing"""
# Clean up any leftover batch files (should not exist if logic is correct)
batch_files = list(self.output_dir.glob("batch_*.json"))
for file in batch_files:
try:
file.unlink()
except Exception as e:
print(f"Error deleting {file}: {e}")
# We can also remove batch_group_*.json if desired after final combine
# but that might not be necessary if we want to keep them.
if self.checkpoint_file.exists():
try:
self.checkpoint_file.unlink()
except Exception as e:
print(f"Error deleting checkpoint file: {e}")
def _deduplicate_dialogues(self, dialogues: List[Dict], threshold: float = 0.9) -> List[Dict]:
"""
Deduplicate dialogues based on text similarity.
"""
print("Deduplicating dialogues...")
if not dialogues:
print("No dialogues provided for deduplication.")
return []
# Combine turns into single text for similarity comparison
texts = [" ".join(turn['text'] for turn in dialogue['turns']) for dialogue in dialogues]
tfidf = TfidfVectorizer().fit_transform(texts)
sim_matrix = cosine_similarity(tfidf)
unique_indices = set()
for i, row in enumerate(sim_matrix):
if i not in unique_indices:
similar_indices = [j for j, sim in enumerate(row) if sim > threshold and j != i]
unique_indices.add(i)
unique_indices.difference_update(similar_indices)
deduplicated_dialogues = [dialogues[i] for i in unique_indices]
print(f"Deduplication complete. Reduced from {len(dialogues)} to {len(deduplicated_dialogues)} dialogues.")
return deduplicated_dialogues
def _validate_and_clean_dialogue(self, dialogue: Dict) -> Optional[Dict]:
"""
Validate and clean a single dialogue.
"""
try:
# Check required fields
if not all(field in dialogue for field in self.config.required_fields):
return None
# Process turns
cleaned_turns = []
for turn in dialogue['turns']:
if self._validate_turn(turn):
cleaned_turn = {
'speaker': turn['speaker'],
'text': self._clean_text(turn['text'])
}
cleaned_turns.append(cleaned_turn)
if cleaned_turns:
return {
'dialogue_id': dialogue['dialogue_id'],
'turns': cleaned_turns
}
return None
except Exception as e:
print(f"Error processing dialogue {dialogue.get('dialogue_id', 'unknown')}: {str(e)}")
return None
def _validate_turn(self, turn: Dict) -> bool:
"""
Validate a single speaking turn.
"""
return (
turn['speaker'] in self.config.allowed_speakers and
self.config.min_length <= len(turn['text']) <= self.config.max_length
)
def _clean_text(self, text: str) -> str:
"""
Clean and normalize text.
"""
# Remove excessive whitespace
text = re.sub(r'\s+', ' ', text.strip())
# Normalize quotes and apostrophes
text = re.sub(r'[’´`]', "'", text)
text = re.sub(r'[β€œβ€]', '"', text)
# Remove control characters
text = "".join(char for char in text if ord(char) >= 32 or char == '\n')
return text
def _process_validation(self, items: List, func, description: str) -> List:
"""
Process items sequentially with a progress bar.
"""
results = []
print(f"Starting {description}")
for item in tqdm(items, desc=description):
try:
result = func(item)
if result is not None:
results.append(result)
except Exception as e:
print(f"Error processing item: {str(e)}")
print(f"Completed {description}. Processed {len(results)} items successfully")
return results
def _get_cache_path(self, data: List[Dict]) -> Path:
"""
Generate cache file path based on data hash.
"""
data_str = json.dumps(data, sort_keys=True)
hash_value = hashlib.md5(data_str.encode()).hexdigest()
return self.cache_dir / f"cache_{hash_value}.pkl"