derm_maskHG / train_unet.py
Johnyquest7's picture
Upload train_unet.py
01ff706 verified
import os
import glob
from PIL import Image
import numpy as np
import cv2 # OpenCV for image loading/processing
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
import torchvision.transforms.functional as TF
import pytorch_lightning as pl
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor, EarlyStopping
import albumentations as A
from albumentations.pytorch import ToTensorV2
import segmentation_models_pytorch as smp
from torchmetrics import JaccardIndex
from torchmetrics.segmentation import DiceScore
# --- Configuration ---
IMG_DIR = "derm_images_flat"
MASK_DIR = "derm_mask_images_flat"
MASK_SUFFIX = "_segmentation" # Part added to image name to get mask name
IMG_SIZE = (256, 256) # Resize images/masks to this size
BATCH_SIZE = 8
NUM_WORKERS = os.cpu_count() // 2
LEARNING_RATE = 1e-4 # Initial LR, will be tuned
MAX_EPOCHS = 5
VAL_SPLIT = 0.15 # 15% for validation
PATIENCE = 5 # For early stopping
ACCELERATOR = "gpu" if torch.cuda.is_available() else "cpu"
DEVICES = 1 if torch.cuda.is_available() else None
PRECISION = 16 if torch.cuda.is_available() else 32 # Use mixed precision if GPU supports it
# --- Dataset ---
class DermDataset(Dataset):
def __init__(self, image_paths, mask_dir, mask_suffix, transform=None):
self.image_paths = image_paths
self.mask_dir = mask_dir
self.mask_suffix = mask_suffix
self.transform = transform
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
img_path = self.image_paths[idx]
img_filename = os.path.basename(img_path)
img_name_part, img_ext = os.path.splitext(img_filename)
# Construct mask path - try common extensions like .png
mask_filename_base = f"{img_name_part}{self.mask_suffix}"
possible_mask_paths = glob.glob(os.path.join(self.mask_dir, f"{mask_filename_base}.*"))
if not possible_mask_paths:
raise FileNotFoundError(f"Mask not found for image: {img_path}. Tried pattern: {mask_filename_base}.* in {self.mask_dir}")
mask_path = possible_mask_paths[0] # Assume first found is the correct one
# Load image (ensure RGB)
image = cv2.imread(img_path)
if image is None:
raise IOError(f"Could not read image: {img_path}")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Load mask (ensure grayscale)
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
if mask is None:
raise IOError(f"Could not read mask: {mask_path}")
# Preprocess mask: ensure binary 0 or 1, add channel dim
mask = (mask > 128).astype(np.float32) # Threshold and convert to float
# mask = np.expand_dims(mask, axis=-1) # Add channel dim if needed by transforms/loss
# Apply transformations
if self.transform:
augmented = self.transform(image=image, mask=mask)
image = augmented['image']
mask = augmented['mask']
# Add channel dimension FOR THE MASK after albumentations if needed
# For BCEWithLogitsLoss with single class output, mask should be [B, 1, H, W]
mask = mask.unsqueeze(0) # Add channel dimension -> [1, H, W]
return {"image": image, "mask": mask}
# --- Transforms ---
def get_transforms(img_size, is_train=True):
if is_train:
# Augmentations for training
return A.Compose([
A.Resize(height=img_size[0], width=img_size[1]),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.5),
A.RandomRotate90(p=0.5),
A.Affine(scale=(0.9, 1.1), translate_percent=0.0625, rotate=(-15, 15), p=0.5, cval=0),
A.OneOf([
A.ElasticTransform(p=0.5, alpha=120, sigma=120 * 0.05),
A.GridDistortion(p=0.5),
A.OpticalDistortion(distort_limit=0.5, p=1)
], p=0.3),
A.RandomBrightnessContrast(p=0.3),
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), # ImageNet stats
ToTensorV2(), # Converts image HWC->CHW, mask HW->HW (need to add C dim later)
])
else:
# Validation/Test: Just resize and normalize
return A.Compose([
A.Resize(height=img_size[0], width=img_size[1]),
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
ToTensorV2(),
])
# --- Lightning Module ---
class UNetLitModule(pl.LightningModule):
def __init__(self, learning_rate=1e-4):
super().__init__()
self.learning_rate = learning_rate
self.save_hyperparameters() # Saves args like learning_rate to hparams
# --- Model ---
# Using segmentation_models_pytorch
self.model = smp.Unet(
encoder_name="resnet34", # Choose backbone
encoder_weights="imagenet", # Use pretrained weights
in_channels=3, # Input channels (RGB)
classes=1, # Output channels (binary mask)
# activation='sigmoid' # Sigmoid usually applied *after* loss
)
# --- Loss Function ---
# BCEWithLogitsLoss is numerically stable for binary classification
self.loss_fn = nn.BCEWithLogitsLoss()
# --- Metrics ---
# Jaccard Index (IoU) for Segmentation
self.iou_metric = JaccardIndex(task="binary", threshold=0.5) # Threshold output probabilities
def forward(self, x):
return self.model(x)
def _common_step(self, batch, batch_idx, stage):
images = batch["image"]
masks = batch["mask"]
logits = self(images) # Model output (before activation)
loss = self.loss_fn(logits, masks)
# Calculate metrics
# Apply sigmoid before calculating metrics as they expect probabilities
preds = torch.sigmoid(logits)
iou = self.iou_metric(preds, masks.int()) # JaccardIndex expects integer masks
self.log(f"{stage}_loss", loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
self.log(f"{stage}_iou", iou, on_step=False, on_epoch=True, prog_bar=True, logger=True)
return loss
def training_step(self, batch, batch_idx):
return self._common_step(batch, batch_idx, "train")
def validation_step(self, batch, batch_idx):
return self._common_step(batch, batch_idx, "val")
def test_step(self, batch, batch_idx):
# Optional: If you have a separate test set
return self._common_step(batch, batch_idx, "test")
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
# Optional: Add a learning rate scheduler
# scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=3)
# return {"optimizer": optimizer, "lr_scheduler": {"scheduler": scheduler, "monitor": "val_loss"}}
return optimizer
# --- Main Training Script ---
if __name__ == "__main__":
pl.seed_everything(42) # for reproducibility
# --- Setup Data ---
all_image_paths = sorted(glob.glob(os.path.join(IMG_DIR, "*.*"))) # Find all image files
if not all_image_paths:
raise FileNotFoundError(f"No images found in {IMG_DIR}")
# Split data
n_total = len(all_image_paths)
n_val = int(n_total * VAL_SPLIT)
n_train = n_total - n_val
if n_train == 0 or n_val == 0:
raise ValueError(f"Train ({n_train}) or Val ({n_val}) split has 0 samples. Check VAL_SPLIT and dataset size.")
train_paths, val_paths = random_split(all_image_paths, [n_train, n_val])
train_dataset = DermDataset(list(train_paths), MASK_DIR, MASK_SUFFIX, transform=get_transforms(IMG_SIZE, is_train=True))
val_dataset = DermDataset(list(val_paths), MASK_DIR, MASK_SUFFIX, transform=get_transforms(IMG_SIZE, is_train=False))
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=NUM_WORKERS, pin_memory=True)
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=NUM_WORKERS, pin_memory=True)
print(f"Found {n_total} images. Training on {len(train_dataset)}, Validating on {len(val_dataset)}.")
# --- Initialize Model ---
# Instantiate with a placeholder LR first for LR finder
model = UNetLitModule(learning_rate=LEARNING_RATE)
# --- Callbacks ---
checkpoint_callback = ModelCheckpoint(
dirpath="checkpoints",
filename="unet-derm-{epoch:02d}-{val_iou:.4f}",
save_top_k=1,
verbose=True,
monitor="val_iou", # Save based on validation IoU
mode="max" # Maximize IoU
)
lr_monitor = LearningRateMonitor(logging_interval='step')
early_stop_callback = EarlyStopping(
monitor="val_iou", # Monitor validation IoU
patience=PATIENCE,
verbose=True,
mode="max" # Stop if IoU stops improving
)
logger = TensorBoardLogger("tb_logs", name="unet_derm_resnet34")
# --- Trainer ---
trainer = pl.Trainer(
logger=logger,
callbacks=[checkpoint_callback, lr_monitor, early_stop_callback],
max_epochs=MAX_EPOCHS,
accelerator=ACCELERATOR,
devices=DEVICES,
precision=PRECISION,
log_every_n_steps=10,
# deterministic=True, # Might slow down training
)
# --- Find Optimal Learning Rate ---
print("\nFinding optimal learning rate...")
tuner = pl.tuner.Tuner(trainer)
lr_finder_result = tuner.lr_find(model, train_dataloaders=train_loader, val_dataloaders=val_loader, num_training=100) # Run LR finder for 100 steps
# Inspect results and pick learning rate
fig = lr_finder_result.plot(suggest=True)
fig.show() # Display plot
suggested_lr = lr_finder_result.suggestion()
if suggested_lr is not None:
print(f"Suggested LR: {suggested_lr:.2e}")
model.hparams.learning_rate = suggested_lr # Update model's hparam
print(f"Using LR: {model.hparams.learning_rate:.2e}")
else:
print(f"LR finder did not suggest a rate. Using initial LR: {model.hparams.learning_rate:.2e}")
# --- Start Training ---
print("\nStarting training...")
trainer.fit(model, train_dataloaders=train_loader, val_dataloaders=val_loader)
print("\nTraining finished.")
print(f"Best model saved at: {checkpoint_callback.best_model_path}")
# --- Save final model state dict separately (optional, sometimes easier for inference) ---
final_model_path = "unet_derm_final_model.pth"
# Load best model before saving state dict
best_model = UNetLitModule.load_from_checkpoint(checkpoint_callback.best_model_path)
torch.save(best_model.model.state_dict(), final_model_path)
print(f"Final model state_dict saved to: {final_model_path}")