Spaces:
Sleeping
Sleeping
# utils/preprocessing.py | |
import pandas as pd | |
from sklearn.preprocessing import StandardScaler | |
from utils import feature_engineering | |
def preprocess_data_for_streamlit(data_path): | |
df = pd.read_csv(data_path) | |
df = feature_engineering(df) # Assuming feature_engineering is defined | |
X = df.drop('label', axis=1) | |
scaler = StandardScaler() | |
X_scaled = scaler.fit_transform(X) | |
return df, X_scaled | |
# utils/preprocessing.py | |
import pandas as pd | |
from sklearn.model_selection import train_test_split | |
def preprocess_data(data_path, test_size=0.2, random_state=42): | |
df = pd.read_csv(data_path) | |
df = feature_engineering(df) | |
X = df.drop('label', axis=1) | |
y = df['label'] | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state) | |
scaler = StandardScaler() | |
X_train_scaled = scaler.fit_transform(X_train) | |
X_test_scaled = scaler.transform(X_test) | |
return X_train_scaled, X_test_scaled, y_train, y_test | |