File size: 2,168 Bytes
3e6515e
 
db4ec8b
 
3e6515e
db4ec8b
8136c32
 
b5075c8
8136c32
3e6515e
b5075c8
 
 
 
3e6515e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5075c8
 
 
387af33
 
 
 
3e6515e
 
 
db4ec8b
 
b5350a9
3e6515e
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import gradio as gr
from huggingface_hub import InferenceClient
from datasets import load_dataset

client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
dataset = load_dataset("JustKiddo/KiddosVault")

## A translation dataset for Vietnamese responses ##
translation = load_dataset("IWSLT/mt_eng_vietnamese")
trust_remote_code=True ## Trust remote code ##

def translate_text(text, translation_dataset):
    # Assuming the translation dataset has a method to translate text
    translated_text = translation_dataset['train'][0]['translation']['vi']  # Example translation
    return translated_text

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content
        response += token
        yield response

    translated_response = translate_text(response, translation)
    yield response + "\n\nTranslation: " + translated_response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a professional Mental Healthcare Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=1, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)

if __name__ == "__main__":
    demo.launch()