File size: 2,296 Bytes
328cff6
 
 
c003113
 
 
8a1772b
c003113
 
 
 
 
 
 
0c39b3b
328cff6
 
 
 
8a1772b
 
0c39b3b
328cff6
 
 
 
 
 
8a1772b
01d5b32
 
 
 
8a1772b
 
 
01d5b32
8a1772b
 
8b67aaf
8a1772b
 
 
 
 
 
 
 
0c39b3b
 
 
 
 
 
 
 
 
 
 
 
 
 
8a1772b
0c39b3b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import gradio as gr
import numpy as np
import random
import torch

from helper.cond_encoder import CLIPEncoder
from helper.loader import Loader

from auto_encoder.models.variational_auto_encoder import VariationalAutoEncoder
from clip.models.ko_clip import KoCLIPWrapper
from diffusion_model.sampler.ddim import DDIM
from diffusion_model.models.latent_diffusion_model import LatentDiffusionModel
from diffusion_model.network.unet import Unet
from diffusion_model.network.unet_wrapper import UnetWrapper
from huggingface_hub import hf_hub_download

# import spaces #[uncomment to use ZeroGPU]

device = "cuda" if torch.cuda.is_available() else "cpu"
loader = Loader(device)
repo_id = "JuyeopDang/KoFace-Diffusion"
CONFIG_PATH = 'configs/composite_config.yaml'

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

def load_model_from_HF(model, repo_id, filename, is_ema=False):
    try:
        model_path = hf_hub_download(repo_id=repo_id, filename=filename)
    except Exception as e:
        print(f"ํŒŒ์ผ ๋‹ค์šด๋กœ๋“œ ๋˜๋Š” ๋ชจ๋ธ ๋กœ๋“œ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {e}")
    model_path = model_path[:-4]
    model = loader.model_load(model_path, model, is_ema=is_ema, print_dict=False)
    return model

if __name__ == "__main__":
    vae = VariationalAutoEncoder(CONFIG_PATH)
    sampler = DDIM(CONFIG_PATH)
    clip = KoCLIPWrapper()
    cond_encoder = CLIPEncoder(clip, CONFIG_PATH)
    network = UnetWrapper(Unet, CONFIG_PATH, cond_encoder)
    dm = LatentDiffusionModel(network, sampler, vae)

    vae = load_model_from_HF(vae, repo_id, "composite_epoch2472.pth", False)
    clip = load_model_from_HF(clip, repo_id, "asian-composite-fine-tuned-koclip.pth", True)
    dm = load_model_from_HF(dm, repo_id, "asian-composite-clip-ldm.pth", True)

    def generate_image(y, gamma, dm):
        images = dm.sample(2, y = y, gamma = gamma)
        images = images.permute(0, 2, 3, 1) 
        if type(images) is torch.Tensor:
          images = images.detach().cpu().numpy()
        images = np.clip(images / 2 + 0.5, 0, 1)
        return im.fromarray((images[0] * 255).astype(np.uint8))

    demo = gr.Interface(
        generate_image,
        inputs=["textbox", gr.Slider(0, 10)],
        outputs=["image"],
    )
    
    demo.launch()