JuyeopDang's picture
Upload 35 files
5ab5cab verified
#source : https://github.com/CompVis/latent-diffusion/blob/main/ldm/modules/diffusionmodules/model.py#L368
import torch
import torch.nn as nn
import numpy as np
from auto_encoder.components.normalize import Normalize
from auto_encoder.components.resnet_block import ResnetBlock
from auto_encoder.components.sampling import Upsample
from auto_encoder.components.nonlinearity import nonlinearity
class Decoder(nn.Module):
def __init__(self, *, in_channels, out_channels, resolution, channels, channel_multipliers = (1, 2, 4, 8), z_channels, num_res_blocks,
dropout = 0.0, resample_with_conv : bool = True):
super().__init__()
self.ch = channels
self.num_resolutions = len(channel_multipliers)
self.num_res_blocks = num_res_blocks
self.in_channels = in_channels
self.z_channels = z_channels
in_ch_mult = (1 , ) + tuple(channel_multipliers)
block_in = self.ch * in_ch_mult[self.num_resolutions - 1]
curr_res = resolution // 2 ** (self.num_resolutions - 1)
self.z_shape = (1 , z_channels, curr_res, curr_res)
print("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape)))
# z to block_in
self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size = 3, stride = 1, padding = 1)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels = block_in, out_channels = block_in, dropout = dropout)
self.mid.block_2 = ResnetBlock(in_channels = block_in, out_channels = block_in, dropout = dropout)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
block_out = self.ch * channel_multipliers[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(ResnetBlock(in_channels = block_in, out_channels = block_out,
dropout = dropout))
block_in = block_out
up = nn.Module()
up.block = block
if i_level != 0:
up.upsample = Upsample(block_in, resample_with_conv)
curr_res = curr_res * 2
self.up.insert(0, up)
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(block_in, out_channels,
kernel_size = 3, stride = 1, padding = 1)
def forward(self, z):
assert z.shape[1:] == self.z_shape[1:]
self.last_z_shape = z.shape
# z to block_in
h = self.conv_in(z)
# middle
h = self.mid.block_1(h)
h = self.mid.block_2(h)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h)
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h