Spaces:
Running
Running
#source : https://github.com/CompVis/latent-diffusion/blob/main/ldm/modules/diffusionmodules/model.py#L368 | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
from auto_encoder.components.normalize import Normalize | |
from auto_encoder.components.resnet_block import ResnetBlock | |
from auto_encoder.components.sampling import Upsample | |
from auto_encoder.components.nonlinearity import nonlinearity | |
class Decoder(nn.Module): | |
def __init__(self, *, in_channels, out_channels, resolution, channels, channel_multipliers = (1, 2, 4, 8), z_channels, num_res_blocks, | |
dropout = 0.0, resample_with_conv : bool = True): | |
super().__init__() | |
self.ch = channels | |
self.num_resolutions = len(channel_multipliers) | |
self.num_res_blocks = num_res_blocks | |
self.in_channels = in_channels | |
self.z_channels = z_channels | |
in_ch_mult = (1 , ) + tuple(channel_multipliers) | |
block_in = self.ch * in_ch_mult[self.num_resolutions - 1] | |
curr_res = resolution // 2 ** (self.num_resolutions - 1) | |
self.z_shape = (1 , z_channels, curr_res, curr_res) | |
print("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape))) | |
# z to block_in | |
self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size = 3, stride = 1, padding = 1) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock(in_channels = block_in, out_channels = block_in, dropout = dropout) | |
self.mid.block_2 = ResnetBlock(in_channels = block_in, out_channels = block_in, dropout = dropout) | |
# upsampling | |
self.up = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
block = nn.ModuleList() | |
block_out = self.ch * channel_multipliers[i_level] | |
for i_block in range(self.num_res_blocks + 1): | |
block.append(ResnetBlock(in_channels = block_in, out_channels = block_out, | |
dropout = dropout)) | |
block_in = block_out | |
up = nn.Module() | |
up.block = block | |
if i_level != 0: | |
up.upsample = Upsample(block_in, resample_with_conv) | |
curr_res = curr_res * 2 | |
self.up.insert(0, up) | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d(block_in, out_channels, | |
kernel_size = 3, stride = 1, padding = 1) | |
def forward(self, z): | |
assert z.shape[1:] == self.z_shape[1:] | |
self.last_z_shape = z.shape | |
# z to block_in | |
h = self.conv_in(z) | |
# middle | |
h = self.mid.block_1(h) | |
h = self.mid.block_2(h) | |
# upsampling | |
for i_level in reversed(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks + 1): | |
h = self.up[i_level].block[i_block](h) | |
if i_level != 0: | |
h = self.up[i_level].upsample(h) | |
# end | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h |