Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from auto_encoder.models.encoder import Encoder | |
from auto_encoder.models.decoder import Decoder | |
import yaml | |
from auto_encoder.components.distributions import DiagonalGaussianDistribution | |
class VariationalAutoEncoder(nn.Module): | |
def __init__(self, config_path): | |
super().__init__() | |
with open(config_path, "r") as file: | |
config = yaml.safe_load(file) | |
self.add_module('encoder', Encoder(**config["encoder"])) | |
self.add_module('decoder', Decoder(**config["decoder"])) | |
self.embed_dim = config['vae']['embed_dim'] | |
self.kld_weight = float(config['vae']['kld_weight']) | |
self.quant_conv = torch.nn.Conv2d(self.decoder.z_channels, 2*self.embed_dim, 1) | |
self.post_quant_conv = torch.nn.Conv2d(self.embed_dim, self.decoder.z_channels, 1) | |
def encode(self, x): | |
h = self.encoder(x) | |
moments = self.quant_conv(h) | |
posterior = DiagonalGaussianDistribution(moments) | |
return posterior | |
def decode(self, z): | |
z = self.post_quant_conv(z) | |
dec = self.decoder(z) | |
return dec | |
def loss(self, x): | |
x_hat, posterior = self(x) | |
return F.mse_loss(x, x_hat) + self.kld_weight * posterior.kl().mean() | |
def forward(self, input, sample_posterior=True): | |
posterior = self.encode(input) | |
if sample_posterior: | |
z = posterior.sample() | |
else: | |
z = posterior.mode() | |
dec = self.decode(z) | |
return dec, posterior |