KoFace-AI / auto_encoder /models /variational_auto_encoder.py
JuyeopDang's picture
Upload 35 files
5ab5cab verified
import torch
import torch.nn as nn
import torch.nn.functional as F
from auto_encoder.models.encoder import Encoder
from auto_encoder.models.decoder import Decoder
import yaml
from auto_encoder.components.distributions import DiagonalGaussianDistribution
class VariationalAutoEncoder(nn.Module):
def __init__(self, config_path):
super().__init__()
with open(config_path, "r") as file:
config = yaml.safe_load(file)
self.add_module('encoder', Encoder(**config["encoder"]))
self.add_module('decoder', Decoder(**config["decoder"]))
self.embed_dim = config['vae']['embed_dim']
self.kld_weight = float(config['vae']['kld_weight'])
self.quant_conv = torch.nn.Conv2d(self.decoder.z_channels, 2*self.embed_dim, 1)
self.post_quant_conv = torch.nn.Conv2d(self.embed_dim, self.decoder.z_channels, 1)
def encode(self, x):
h = self.encoder(x)
moments = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(moments)
return posterior
def decode(self, z):
z = self.post_quant_conv(z)
dec = self.decoder(z)
return dec
def loss(self, x):
x_hat, posterior = self(x)
return F.mse_loss(x, x_hat) + self.kld_weight * posterior.kl().mean()
def forward(self, input, sample_posterior=True):
posterior = self.encode(input)
if sample_posterior:
z = posterior.sample()
else:
z = posterior.mode()
dec = self.decode(z)
return dec, posterior