Spaces:
Running
Running
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/main/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py#L442 | |
import torch | |
import math | |
class BetaGenerator(): | |
def __init__(self, T) : | |
self.T = T | |
def fixed_beta_schedule(self, beta) : | |
betas = torch.Tensor.repeat(torch.Tensor([beta]) , self.T) | |
return betas | |
def linear_beta_schedule(self): | |
""" | |
linear schedule, proposed in original ddpm paper | |
""" | |
scale = 1000 / self.T | |
beta_start = scale * 0.0001 | |
beta_end = scale * 0.02 | |
return torch.linspace(beta_start, beta_end, self.T) | |
def cosine_beta_schedule(self, s = 0.008): | |
""" | |
cosine schedule | |
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ | |
""" | |
steps = self.T + 1 | |
t = torch.linspace(0, self.T, steps, dtype = torch.float32) / self.T | |
alphas_cumprod = torch.cos((t + s) / (1 + s) * math.pi * 0.5) ** 2 | |
alphas_cumprod = alphas_cumprod / alphas_cumprod[0] | |
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) | |
return torch.clip(betas, 0, 0.999) | |
def sigmoid_beta_schedule(self, start = -3, end = 3, tau = 1): | |
""" | |
sigmoid schedule | |
proposed in https://arxiv.org/abs/2212.11972 - Figure 8 | |
better for images > 64x64, when used during training | |
""" | |
steps = self.T + 1 | |
t = torch.linspace(0, self.T, steps, dtype = torch.float32) / self.T | |
v_start = torch.tensor(start / tau).sigmoid() | |
v_end = torch.tensor(end / tau).sigmoid() | |
alphas_cumprod = (-((t * (end - start) + start) / tau).sigmoid() + v_end) / (v_end - v_start) | |
alphas_cumprod = alphas_cumprod / alphas_cumprod[0] | |
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) | |
return torch.clip(betas, 0, 0.999) |