Spaces:
Sleeping
Sleeping
File size: 13,253 Bytes
ecd47e6 5b7e38a 41cd3de ecd47e6 5b7e38a 41cd3de 5b7e38a ecd47e6 5b7e38a ecd47e6 5b7e38a ecd47e6 41cd3de ecd47e6 5b7e38a 4c3ec34 5b7e38a 4c3ec34 5b7e38a 4c3ec34 ecd47e6 4c3ec34 ecd47e6 5b7e38a ecd47e6 4c3ec34 41cd3de ecd47e6 41cd3de ecd47e6 4c3ec34 ecd47e6 4c3ec34 ecd47e6 4c3ec34 ecd47e6 5b7e38a ecd47e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import gradio as gr
import pandas as pd
from datasets import load_dataset
from openai import OpenAI
from PIL import Image
import io
import base64
import logging
import torch
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
from typing import Iterator
import os
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# App version
APP_VERSION = "1.0.0"
logger.info(f"Starting Radiology Teaching App v{APP_VERSION}")
# Initialize models for local inference
device = 0 if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
# Initialize Whisper
MODEL_NAME = "openai/whisper-large-v3-turbo"
BATCH_SIZE = 8
FILE_LIMIT_MB = 5000
try:
logger.info("Initializing Whisper model...")
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
except Exception as e:
logger.error(f"Error initializing Whisper model: {str(e)}")
pipe = None
# Initialize Llama
try:
logger.info("Initializing Llama model...")
if torch.cuda.is_available():
llm_model_id = "chuanli11/Llama-3.2-3B-Instruct-uncensored"
llm = AutoModelForCausalLM.from_pretrained(llm_model_id, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(llm_model_id)
tokenizer.use_default_system_prompt = False
except Exception as e:
logger.error(f"Error initializing Llama model: {str(e)}")
llm = None
tokenizer = None
try:
# Load only 10 rows from the dataset
logger.info("Loading MIMIC-CXR dataset...")
dataset = load_dataset("itsanmolgupta/mimic-cxr-dataset", split="train").select(range(10))
df = pd.DataFrame(dataset)
logger.info(f"Successfully loaded {len(df)} cases")
except Exception as e:
logger.error(f"Error loading dataset: {str(e)}")
raise
def encode_image_to_base64(image_bytes):
return base64.b64encode(image_bytes).decode('utf-8')
def analyze_report(user_findings, ground_truth_findings, ground_truth_impression, api_key):
if not api_key:
return "Please provide a DeepSeek API key to analyze the report."
try:
client = OpenAI(api_key=api_key, base_url="https://api.deepseek.com")
logger.info("Analyzing report with DeepSeek...")
prompt = f"""You are an expert radiologist reviewing a trainee's chest X-ray report.
Trainee's Findings:
{user_findings}
Ground Truth Findings:
{ground_truth_findings}
Ground Truth Impression:
{ground_truth_impression}
Please provide:
1. Number of important findings missed by the trainee (list them)
2. Quality assessment of the trainee's report (structure, completeness, accuracy)
3. Constructive feedback for improvement
Format your response in clear sections."""
response = client.chat.completions.create(
model="deepseek-chat",
messages=[
{"role": "system", "content": "You are an expert radiologist providing constructive feedback."},
{"role": "user", "content": prompt}
],
stream=False
)
return response.choices[0].message.content
except Exception as e:
logger.error(f"Error in report analysis: {str(e)}")
return f"Error analyzing report: {str(e)}"
def transcribe(inputs, task="transcribe"):
"""Transcribe audio using Whisper"""
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
if pipe is None:
raise gr.Error("Whisper model not initialized properly!")
try:
logger.info("Transcribing audio...")
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
return text
except Exception as e:
logger.error(f"Error in transcription: {str(e)}")
raise gr.Error(f"Transcription failed: {str(e)}")
def analyze_with_llama(
transcribed_text: str,
ground_truth_findings: str,
ground_truth_impression: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
) -> Iterator[str]:
"""Analyze transcribed report against ground truth using Llama"""
if llm is None or tokenizer is None:
raise gr.Error("Llama model not initialized properly!")
try:
task_prompt = f"""You are an expert radiologist. Compare the following transcribed radiology report with the ground truth and provide detailed feedback.
Transcribed Report:
{transcribed_text}
Ground Truth Findings:
{ground_truth_findings}
Ground Truth Impression:
{ground_truth_impression}
Please analyze:
1. Accuracy of findings
2. Completeness of report
3. Structure and clarity
4. Areas for improvement
Provide your analysis in a clear, structured format."""
conversation = [
{"role": "system", "content": "You are an expert radiologist providing detailed feedback."},
{"role": "user", "content": task_prompt}
]
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
input_ids = input_ids.to(llm.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
num_beams=1,
)
t = Thread(target=llm.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
except Exception as e:
logger.error(f"Error in Llama analysis: {str(e)}")
raise gr.Error(f"Analysis failed: {str(e)}")
def load_random_case(hide_ground_truth):
try:
# Randomly select a case from our dataset
random_case = df.sample(n=1).iloc[0]
logger.info("Loading random case...")
# Get the image, findings, and impression
image = random_case['image']
# Store full findings and impression regardless of hide_ground_truth
findings = random_case['findings']
impression = random_case['impression']
# Only hide display if hide_ground_truth is True
display_findings = "" if hide_ground_truth else findings
display_impression = "" if hide_ground_truth else impression
# Return both display values and actual values
return image, display_findings, display_impression, findings, impression
except Exception as e:
logger.error(f"Error loading random case: {str(e)}")
return None, "Error loading case", "Error loading case", "", ""
def process_case(image, user_findings, hide_ground_truth, api_key, current_findings="", current_impression="", actual_findings="", actual_impression=""):
# Use actual findings/impression for analysis if they exist, otherwise fall back to current values
findings_for_analysis = actual_findings if actual_findings else current_findings
impression_for_analysis = actual_impression if actual_impression else current_impression
analysis = analyze_report(user_findings, findings_for_analysis, impression_for_analysis, api_key)
# Return display values based on hide_ground_truth
display_findings = "" if hide_ground_truth else findings_for_analysis
display_impression = "" if hide_ground_truth else impression_for_analysis
return display_findings, display_impression, analysis
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown(f"# Radiology Report Training System v{APP_VERSION}")
gr.Markdown("### Practice your chest X-ray reading and reporting skills")
# Add state variables to store actual findings and impression
actual_findings_state = gr.State("")
actual_impression_state = gr.State("")
with gr.Tab("DeepSeek Analysis"):
with gr.Row():
with gr.Column():
image_display = gr.Image(label="Chest X-ray Image", type="pil")
api_key_input = gr.Textbox(label="DeepSeek API Key", type="password")
hide_truth = gr.Checkbox(label="Hide Ground Truth", value=False)
load_btn = gr.Button("Load Random Case")
with gr.Column():
user_findings_input = gr.Textbox(label="Your Findings", lines=10, placeholder="Type or dictate your findings here...")
ground_truth_findings = gr.Textbox(label="Ground Truth Findings", lines=5, interactive=False)
ground_truth_impression = gr.Textbox(label="Ground Truth Impression", lines=5, interactive=False)
analysis_output = gr.Textbox(label="Analysis and Feedback", lines=10, interactive=False)
submit_btn = gr.Button("Submit Report")
with gr.Tab("Local Inference"):
gr.Markdown("### Use Local Models for Transcription and Analysis")
with gr.Row():
with gr.Column():
# Transcription Interface
audio_input = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Record or Upload Audio")
task_input = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
transcribe_button = gr.Button("Transcribe Audio")
transcription_output = gr.Textbox(label="Transcription Output", lines=5)
# Load case for comparison
load_case_btn = gr.Button("Load Random Case for Comparison")
local_ground_truth_findings = gr.Textbox(label="Ground Truth Findings", lines=5, interactive=False)
local_ground_truth_impression = gr.Textbox(label="Ground Truth Impression", lines=5, interactive=False)
with gr.Column():
# Editable transcription and analysis interface
edited_transcription = gr.Textbox(label="Edit Transcription", lines=10)
temperature_input = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.6, step=0.1)
max_tokens_input = gr.Slider(label="Max Tokens", minimum=256, maximum=2048, value=1024, step=128)
analyze_btn = gr.Button("Analyze with Llama")
llama_analysis_output = gr.Textbox(label="Llama Analysis Output", lines=15, interactive=False)
# Event handlers for Local Inference tab
transcribe_button.click(
fn=transcribe,
inputs=[audio_input, task_input],
outputs=transcription_output
)
# Copy transcription to editable box
transcription_output.change(
fn=lambda x: x,
inputs=[transcription_output],
outputs=[edited_transcription]
)
# Load case for local analysis
load_case_btn.click(
fn=load_random_case,
inputs=[gr.Checkbox(value=False, visible=False)], # Hidden checkbox for hide_ground_truth
outputs=[
gr.Image(visible=False), # Hidden image output
local_ground_truth_findings,
local_ground_truth_impression,
gr.State(), # Hidden state
gr.State() # Hidden state
]
)
# Analyze with Llama
analyze_btn.click(
fn=analyze_with_llama,
inputs=[
edited_transcription,
local_ground_truth_findings,
local_ground_truth_impression,
max_tokens_input,
temperature_input
],
outputs=llama_analysis_output
)
# Event handlers for DeepSeek Analysis tab
load_btn.click(
fn=load_random_case,
inputs=[hide_truth],
outputs=[
image_display,
ground_truth_findings,
ground_truth_impression,
actual_findings_state,
actual_impression_state
]
)
submit_btn.click(
fn=process_case,
inputs=[
image_display,
user_findings_input,
hide_truth,
api_key_input,
ground_truth_findings,
ground_truth_impression,
actual_findings_state,
actual_impression_state
],
outputs=[
ground_truth_findings,
ground_truth_impression,
analysis_output
]
)
hide_truth.change(
fn=lambda x, f, i: ("" if x else f, "" if x else i, ""),
inputs=[hide_truth, actual_findings_state, actual_impression_state],
outputs=[ground_truth_findings, ground_truth_impression, analysis_output]
)
logger.info("Starting Gradio interface...")
demo.launch() |