|
# Data Processing |
|
|
|
This is the data processing pipeline for 3D shape and texture generation. |
|
|
|
**Notes**: |
|
1. This implementation is a simplified version of our industrial pipeline. |
|
2. The rendering script is based on [TRELLIS](https://github.com/microsoft/TRELLIS/blob/main/dataset_toolkits/blender_script/render.py). |
|
|
|
## Rendering |
|
|
|
### Motivation |
|
The rendering script `render/render.py` serves three main purposes: |
|
1. Converting complex 3D formats to PLY files using Blender for further processing. |
|
2. Rendering condition images for DiT training. |
|
3. Rendering orthogonal images, PBR materials, and conditional signals (world-space normals and positions) for texture generation. |
|
|
|
### Requirements |
|
The rendering scripts are executed with Blender 4.1. You need to install `opencv`, `OpenEXR`, and `Imath` using Blender's Python. Here is an example for a Macbook: |
|
```bash |
|
/Applications/Blender.app/Contents/Resources/4.1/python/bin/python3.11 -m pip install OpenEXR Imath opencv-python |
|
``` |
|
|
|
### Execution |
|
The first two purposes can be executed with a single command: |
|
```bash |
|
$BLENDER_PATH -b -P render/render.py -- \ |
|
--object ${INPUT_FILE} --geo_mode --resolution 512 \ |
|
--output_folder $OUTPUT_FOLDER |
|
``` |
|
For the third purpose, simply remove the `--geo_mode` flag. |
|
|
|
## Watertight Mesh Processing and Sampling |
|
|
|
### Motivation |
|
To learn an SDF representation for 3DShape2VecSets, we require a watertight input mesh. This pipeline processes raw triangle meshes to generate three essential data types: |
|
1. **Surface samples** - Input points for the encoder. |
|
2. **Volume samples** - Query points for SDF evaluation in the decoder. |
|
3. **Volume SDFs** - Ground-truth signed distance values for VAE training. |
|
|
|
### Execution |
|
Process a triangle mesh (OBJ/OFF format) to generate: |
|
1. Watertight mesh (`${OUTPUT_NAME}_watertight.obj`). |
|
2. Surface point samples (`${OUTPUT_NAME}_surface.npz`). |
|
3. Volume samples with SDFs (`${OUTPUT_NAME}_sdf.npz`). |
|
|
|
**Command:** |
|
```bash |
|
python3 watertight/watertight_and_sample.py \ |
|
--input_obj ${INPUT_MESH} \ |
|
--output_prefix ${OUTPUT_NAME} |
|
``` |
|
|
|
### Output Data Format |
|
|
|
#### 1. Surface Samples (`${OUTPUT_NAME}_surface.npz`) |
|
Contains two point cloud arrays in numpy NPZ format: |
|
|
|
| Key | Shape | Format | Description | |
|
|-----------------|----------|----------|---------------------------------| |
|
| `random_surface` | `(N, 6)` | `float16`| Uniform point samples on surface | |
|
| `sharp_surface` | `(M, 6)` | `float16`| Samples near sharp mesh edges | |
|
|
|
#### 2. Volume SDF Samples (`${OUTPUT_NAME}_sdf.npz`) |
|
Contains three sample types stored as array pairs. For each type `${type}`: |
|
|
|
| Sample Type | Points Array | SDF Labels Array | Shape | Format | Description | |
|
|-----------------|----------------------|----------------------|----------|----------|-------------------------| |
|
| `vol` | `vol_points` | `vol_label` | `(P, 3)/(P,)` | `float16`| Random spatial samples | |
|
| `random_near` | `random_near_points` | `random_near_label` | `(Q, 3)/(Q,)` | `float16`| Samples near surface | |
|
| `sharp_near` | `sharp_near_points` | `sharp_near_label` | `(R, 3)/(R,)` | `float16`| Samples near sharp edges | |
|
|
|
**Data Specifications**: |
|
- All point coordinates (`*_points` arrays) contain 3D positions stored as `float16` values. |
|
- All SDF values (`*_label` arrays) are `float16` scalars representing: |
|
- **Positive values**: Outside the surface. |
|
- **Negative values**: Inside the surface. |
|
- **Zero values**: On the surface. |
|
- Array dimensions: |
|
- `N`, `M`, `P`, `Q`, `R` represent sample counts (vary per shape). |
|
- `3` indicates XYZ coordinates. |
|
- `6` indicates XYZ/Normal coordinates. |
|
- All arrays are stored uncompressed in numpy's NPZ format. |
|
|
|
## Overall Script |
|
Modify the first four variables in `pipeline.sh`: |
|
1. **INPUT_FILE** The path to each 3D data file. |
|
2. **OUTPUT_FOLDER** The overall path for the output dataset. |
|
3. **NAME** The naming for the output path of each data. |
|
4. **BLENDER_PATH** The executable path for Blender. |
|
|
|
Then run the following script: |
|
```bash |
|
bash pipeline.sh |
|
``` |