Spaces:
Sleeping
Sleeping
# app.py (最终确认版 - 使用 gr.Blocks) | |
import gradio as gr | |
from langchain.prompts import PromptTemplate | |
from langchain_community.embeddings import HuggingFaceBgeEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from langchain.chains import RetrievalQA | |
from langchain_community.llms import LlamaCpp | |
from huggingface_hub import hf_hub_download | |
import os | |
import time | |
# --- 1. 配置 (保持不变) --- | |
VECTOR_STORE_PATH = "vector_store" | |
EMBEDDING_MODEL = "BAAI/bge-large-zh-v1.5" | |
# 切换到 CapybaraHermes-2.5-Mistral-7B 模型 | |
GGUF_MODEL_REPO = "TheBloke/CapybaraHermes-2.5-Mistral-7B-GGUF" | |
# 我们选择一个大小适中的4位量化版本 | |
GGUF_MODEL_FILE = "capybarahermes-2.5-mistral-7b.Q4_K_M.gguf" | |
# --- 2. 加载RAG管道 (保持不变) --- | |
def load_rag_chain(): | |
print("开始加载RAG管道...") | |
embeddings = HuggingFaceBgeEmbeddings(model_name=EMBEDDING_MODEL, model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True}) | |
if not os.path.exists(VECTOR_STORE_PATH): raise FileNotFoundError(f"错误:向量数据库 '{VECTOR_STORE_PATH}' 不存在!") | |
vector_store = FAISS.load_local(VECTOR_STORE_PATH, embeddings, allow_dangerous_deserialization=True) | |
model_path = hf_hub_download(repo_id=GGUF_MODEL_REPO, filename=GGUF_MODEL_FILE, local_dir="models") | |
llm = LlamaCpp(model_path=model_path, n_gpu_layers=0, n_batch=512, n_ctx=4096, f16_kv=True, verbose=False) | |
# 使用为Mistral模型优化的Prompt模板 | |
prompt_template = """<|im_start|>system | |
You are a helpful assistant named "粤小智". Answer the user's question in Chinese based on the provided "Context". | |
If the context is not sufficient, just say: "抱歉,关于您的问题,我的知识库暂时没有相关信息。". Do not make up answers. | |
Your answer should be clear and step-by-step if it's an operation guide.<|im_end|> | |
<|im_start|>user | |
Context: | |
{context} | |
Question: | |
{question}<|im_end|> | |
<|im_start|>assistant | |
""" | |
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
retriever = vector_store.as_retriever( | |
search_type="similarity_score_threshold", | |
search_kwargs={'score_threshold': 0.3, 'k': 3} | |
) | |
qa_chain = RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=retriever, # 使用我们新创建的retriever | |
chain_type_kwargs={"prompt": PROMPT} | |
) | |
print("✅ RAG管道加载完毕!") | |
return qa_chain | |
# --- 3. Gradio应用逻辑 (适配gr.Blocks) --- | |
RAG_CHAIN = load_rag_chain() | |
def user(user_message, history): | |
# 将用户消息添加到聊天记录中,并返回一个空的输入框 | |
return "", history + [[user_message, None]] | |
def bot(history): | |
# 获取最后一条用户消息 | |
user_message = history[-1][0] | |
print(f"收到用户消息: '{user_message}'") | |
# 调用RAG链获取回答 | |
result = RAG_CHAIN.invoke({"query": user_message}) | |
bot_message = result.get('result', "处理出错").strip() | |
# 模拟打字效果 | |
history[-1][1] = "" | |
for character in bot_message: | |
history[-1][1] += character | |
time.sleep(0.02) # 每个字之间暂停0.02秒 | |
yield history | |
print(f"模型生成回答: '{history[-1][1]}'") | |
# --- 4. 搭建并启动界面 (使用gr.Blocks手动搭建) --- | |
with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important}") as demo: | |
gr.Markdown("# 粤政云服务智能向导 - 我是粤小智 🤖") | |
chatbot = gr.Chatbot( | |
[], | |
elem_id="chatbot", | |
label="聊天窗口", | |
bubble_full_width=True, | |
height=600 | |
) | |
with gr.Row(): | |
txt = gr.Textbox( | |
scale=4, | |
show_label=False, | |
placeholder="在这里输入您的问题,然后按回车键...", | |
container=False, | |
) | |
# 定义回车或点击按钮后的事件流 | |
txt.submit(user, [txt, chatbot], [txt, chatbot], queue=False).then( | |
bot, chatbot, chatbot | |
) | |
# 使用queue()来处理流式(打字效果)输出 | |
demo.queue() | |
demo.launch() |