Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,42 +4,44 @@ from fastapi import FastAPI
|
|
4 |
from pydantic import BaseModel
|
5 |
from typing import Optional
|
6 |
|
7 |
-
# LlamaIndex (>= 0.10.0)
|
8 |
from llama_index.core import Document
|
9 |
from llama_index.core.settings import Settings
|
10 |
-
from llama_index.core.node_parser import SemanticSplitterNodeParser
|
|
|
11 |
from llama_index.llms.llama_cpp import LlamaCPP
|
12 |
from llama_index.core.base.llms.base import BaseLLM
|
13 |
|
14 |
-
# Embedding local (transformers + torch)
|
15 |
from transformers import AutoTokenizer, AutoModel
|
16 |
import torch
|
17 |
import torch.nn.functional as F
|
18 |
-
|
19 |
import os
|
20 |
|
|
|
21 |
app = FastAPI()
|
22 |
|
23 |
-
# ✅ Configuration
|
24 |
CACHE_DIR = "/app/cache"
|
25 |
os.environ["HF_HOME"] = CACHE_DIR
|
26 |
os.environ["TRANSFORMERS_CACHE"] = CACHE_DIR
|
27 |
os.environ["HF_MODULES_CACHE"] = CACHE_DIR
|
28 |
os.environ["HF_HUB_CACHE"] = CACHE_DIR
|
29 |
|
30 |
-
# ✅
|
31 |
MODEL_NAME = "BAAI/bge-small-en-v1.5"
|
32 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, cache_dir=CACHE_DIR)
|
33 |
model = AutoModel.from_pretrained(MODEL_NAME, cache_dir=CACHE_DIR)
|
34 |
|
|
|
35 |
def get_embedding(text: str):
|
36 |
with torch.no_grad():
|
37 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
38 |
outputs = model(**inputs)
|
39 |
-
embeddings = outputs.last_hidden_state[:, 0] #
|
40 |
return F.normalize(embeddings, p=2, dim=1).squeeze().tolist()
|
41 |
|
42 |
-
# ✅ Format des données
|
43 |
class ChunkRequest(BaseModel):
|
44 |
text: str
|
45 |
max_tokens: Optional[int] = 1000
|
@@ -49,12 +51,13 @@ class ChunkRequest(BaseModel):
|
|
49 |
source: Optional[str] = None
|
50 |
type: Optional[str] = None
|
51 |
|
|
|
52 |
@app.post("/chunk")
|
53 |
async def chunk_text(data: ChunkRequest):
|
54 |
try:
|
55 |
print(f"\n✅ Texte reçu ({len(data.text)} caractères) : {data.text[:200]}...", flush=True)
|
56 |
|
57 |
-
# ✅ Chargement du modèle GGUF distant
|
58 |
llm = LlamaCPP(
|
59 |
model_url="https://huggingface.co/TheBloke/CodeLlama-7B-Instruct-GGUF/resolve/main/codellama-7b-instruct.Q4_K_M.gguf",
|
60 |
temperature=0.1,
|
@@ -66,17 +69,17 @@ async def chunk_text(data: ChunkRequest):
|
|
66 |
|
67 |
print("✅ Modèle LLM chargé avec succès !")
|
68 |
|
69 |
-
# ✅ Wrapper
|
70 |
class SimpleEmbedding:
|
71 |
def get_text_embedding(self, text: str):
|
72 |
return get_embedding(text)
|
73 |
|
74 |
-
# ✅ Configuration
|
75 |
-
assert isinstance(llm, BaseLLM), "❌ L
|
76 |
Settings.llm = llm
|
77 |
Settings.embed_model = SimpleEmbedding()
|
78 |
|
79 |
-
print("✅ Configuration du LLM et de l'embedding terminée. On initialise le Semantic Splitter..."
|
80 |
|
81 |
parser = SemanticSplitterNodeParser.from_defaults(llm=llm)
|
82 |
doc = Document(text=data.text)
|
@@ -85,15 +88,14 @@ async def chunk_text(data: ChunkRequest):
|
|
85 |
nodes = parser.get_nodes_from_documents([doc])
|
86 |
print(f"✅ Semantic Splitter : {len(nodes)} chunks générés")
|
87 |
if not nodes:
|
88 |
-
raise ValueError("Aucun chunk produit par
|
89 |
-
|
90 |
except Exception as e:
|
91 |
print(f"⚠️ Fallback vers RecursiveTextSplitter suite à : {e}")
|
92 |
splitter = RecursiveTextSplitter(chunk_size=data.max_tokens, chunk_overlap=data.overlap)
|
93 |
nodes = splitter.get_nodes_from_documents([doc])
|
94 |
print(f"♻️ Recursive Splitter : {len(nodes)} chunks générés")
|
95 |
|
96 |
-
# ✅
|
97 |
return {
|
98 |
"chunks": [node.text for node in nodes],
|
99 |
"metadatas": [node.metadata for node in nodes],
|
@@ -101,13 +103,14 @@ async def chunk_text(data: ChunkRequest):
|
|
101 |
"titre": data.titre,
|
102 |
"source": data.source,
|
103 |
"type": data.type,
|
104 |
-
"error": None #
|
105 |
}
|
106 |
|
107 |
except Exception as e:
|
108 |
print(f"❌ Erreur critique : {e}")
|
109 |
return {"error": str(e)}
|
110 |
|
|
|
111 |
if __name__ == "__main__":
|
112 |
import uvicorn
|
113 |
uvicorn.run("app:app", host="0.0.0.0", port=7860)
|
|
|
4 |
from pydantic import BaseModel
|
5 |
from typing import Optional
|
6 |
|
7 |
+
# ✅ Modules LlamaIndex (version >= 0.10.0)
|
8 |
from llama_index.core import Document
|
9 |
from llama_index.core.settings import Settings
|
10 |
+
from llama_index.core.node_parser import SemanticSplitterNodeParser
|
11 |
+
from llama_index.core.text_splitter import RecursiveTextSplitter
|
12 |
from llama_index.llms.llama_cpp import LlamaCPP
|
13 |
from llama_index.core.base.llms.base import BaseLLM
|
14 |
|
15 |
+
# ✅ Embedding local (transformers + torch)
|
16 |
from transformers import AutoTokenizer, AutoModel
|
17 |
import torch
|
18 |
import torch.nn.functional as F
|
|
|
19 |
import os
|
20 |
|
21 |
+
# ✅ Initialisation de l'app FastAPI
|
22 |
app = FastAPI()
|
23 |
|
24 |
+
# ✅ Configuration du cache Hugging Face (important pour HF Spaces)
|
25 |
CACHE_DIR = "/app/cache"
|
26 |
os.environ["HF_HOME"] = CACHE_DIR
|
27 |
os.environ["TRANSFORMERS_CACHE"] = CACHE_DIR
|
28 |
os.environ["HF_MODULES_CACHE"] = CACHE_DIR
|
29 |
os.environ["HF_HUB_CACHE"] = CACHE_DIR
|
30 |
|
31 |
+
# ✅ Choix du modèle d'embedding dense (ex : BGE-small)
|
32 |
MODEL_NAME = "BAAI/bge-small-en-v1.5"
|
33 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, cache_dir=CACHE_DIR)
|
34 |
model = AutoModel.from_pretrained(MODEL_NAME, cache_dir=CACHE_DIR)
|
35 |
|
36 |
+
# ✅ Fonction d'embedding normalisé (vectorisation dense)
|
37 |
def get_embedding(text: str):
|
38 |
with torch.no_grad():
|
39 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
40 |
outputs = model(**inputs)
|
41 |
+
embeddings = outputs.last_hidden_state[:, 0] # On prend le token [CLS]
|
42 |
return F.normalize(embeddings, p=2, dim=1).squeeze().tolist()
|
43 |
|
44 |
+
# ✅ Format des données envoyées à l’API
|
45 |
class ChunkRequest(BaseModel):
|
46 |
text: str
|
47 |
max_tokens: Optional[int] = 1000
|
|
|
51 |
source: Optional[str] = None
|
52 |
type: Optional[str] = None
|
53 |
|
54 |
+
# ✅ Route de l’API pour le chunking sémantique
|
55 |
@app.post("/chunk")
|
56 |
async def chunk_text(data: ChunkRequest):
|
57 |
try:
|
58 |
print(f"\n✅ Texte reçu ({len(data.text)} caractères) : {data.text[:200]}...", flush=True)
|
59 |
|
60 |
+
# ✅ Chargement du modèle GGUF distant avec LlamaCPP (CPU friendly)
|
61 |
llm = LlamaCPP(
|
62 |
model_url="https://huggingface.co/TheBloke/CodeLlama-7B-Instruct-GGUF/resolve/main/codellama-7b-instruct.Q4_K_M.gguf",
|
63 |
temperature=0.1,
|
|
|
69 |
|
70 |
print("✅ Modèle LLM chargé avec succès !")
|
71 |
|
72 |
+
# ✅ Wrapper embedding compatible avec LlamaIndex
|
73 |
class SimpleEmbedding:
|
74 |
def get_text_embedding(self, text: str):
|
75 |
return get_embedding(text)
|
76 |
|
77 |
+
# ✅ Configuration globale de LlamaIndex
|
78 |
+
assert isinstance(llm, BaseLLM), "❌ L’objet LLM n’est pas compatible avec LlamaIndex"
|
79 |
Settings.llm = llm
|
80 |
Settings.embed_model = SimpleEmbedding()
|
81 |
|
82 |
+
print("✅ Configuration du LLM et de l'embedding terminée. On initialise le Semantic Splitter...")
|
83 |
|
84 |
parser = SemanticSplitterNodeParser.from_defaults(llm=llm)
|
85 |
doc = Document(text=data.text)
|
|
|
88 |
nodes = parser.get_nodes_from_documents([doc])
|
89 |
print(f"✅ Semantic Splitter : {len(nodes)} chunks générés")
|
90 |
if not nodes:
|
91 |
+
raise ValueError("Aucun chunk produit par SemanticSplitter")
|
|
|
92 |
except Exception as e:
|
93 |
print(f"⚠️ Fallback vers RecursiveTextSplitter suite à : {e}")
|
94 |
splitter = RecursiveTextSplitter(chunk_size=data.max_tokens, chunk_overlap=data.overlap)
|
95 |
nodes = splitter.get_nodes_from_documents([doc])
|
96 |
print(f"♻️ Recursive Splitter : {len(nodes)} chunks générés")
|
97 |
|
98 |
+
# ✅ Résultat structuré pour n8n ou autre client HTTP
|
99 |
return {
|
100 |
"chunks": [node.text for node in nodes],
|
101 |
"metadatas": [node.metadata for node in nodes],
|
|
|
103 |
"titre": data.titre,
|
104 |
"source": data.source,
|
105 |
"type": data.type,
|
106 |
+
"error": None # ← utilisé par n8n pour signaler "pas d'erreur"
|
107 |
}
|
108 |
|
109 |
except Exception as e:
|
110 |
print(f"❌ Erreur critique : {e}")
|
111 |
return {"error": str(e)}
|
112 |
|
113 |
+
# ✅ Lancement local (facultatif pour HF Spaces)
|
114 |
if __name__ == "__main__":
|
115 |
import uvicorn
|
116 |
uvicorn.run("app:app", host="0.0.0.0", port=7860)
|