Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,44 +4,43 @@ from fastapi import FastAPI
|
|
4 |
from pydantic import BaseModel
|
5 |
from typing import Optional
|
6 |
|
7 |
-
# ✅
|
8 |
from llama_index.core import Document
|
9 |
from llama_index.core.settings import Settings
|
10 |
-
from llama_index.core.node_parser import SemanticSplitterNodeParser
|
11 |
-
from llama_index.core.text_splitter import RecursiveTextSplitter
|
12 |
from llama_index.llms.llama_cpp import LlamaCPP
|
13 |
from llama_index.core.base.llms.base import BaseLLM
|
14 |
|
15 |
-
# ✅ Embedding local (transformers + torch)
|
16 |
from transformers import AutoTokenizer, AutoModel
|
17 |
import torch
|
18 |
import torch.nn.functional as F
|
19 |
import os
|
20 |
|
21 |
-
# ✅ Initialisation de l'
|
22 |
app = FastAPI()
|
23 |
|
24 |
-
# ✅ Configuration du cache Hugging Face
|
25 |
CACHE_DIR = "/app/cache"
|
26 |
os.environ["HF_HOME"] = CACHE_DIR
|
27 |
os.environ["TRANSFORMERS_CACHE"] = CACHE_DIR
|
28 |
os.environ["HF_MODULES_CACHE"] = CACHE_DIR
|
29 |
os.environ["HF_HUB_CACHE"] = CACHE_DIR
|
30 |
|
31 |
-
# ✅
|
32 |
MODEL_NAME = "BAAI/bge-small-en-v1.5"
|
33 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, cache_dir=CACHE_DIR)
|
34 |
model = AutoModel.from_pretrained(MODEL_NAME, cache_dir=CACHE_DIR)
|
35 |
|
36 |
-
# ✅ Fonction d'embedding normalisé (vectorisation dense)
|
37 |
def get_embedding(text: str):
|
|
|
38 |
with torch.no_grad():
|
39 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
40 |
outputs = model(**inputs)
|
41 |
-
embeddings = outputs.last_hidden_state[:, 0] # On prend le
|
42 |
return F.normalize(embeddings, p=2, dim=1).squeeze().tolist()
|
43 |
|
44 |
-
# ✅
|
45 |
class ChunkRequest(BaseModel):
|
46 |
text: str
|
47 |
max_tokens: Optional[int] = 1000
|
@@ -51,13 +50,12 @@ class ChunkRequest(BaseModel):
|
|
51 |
source: Optional[str] = None
|
52 |
type: Optional[str] = None
|
53 |
|
54 |
-
# ✅ Route de l’API pour le chunking sémantique
|
55 |
@app.post("/chunk")
|
56 |
async def chunk_text(data: ChunkRequest):
|
57 |
try:
|
58 |
print(f"\n✅ Texte reçu ({len(data.text)} caractères) : {data.text[:200]}...", flush=True)
|
59 |
|
60 |
-
# ✅ Chargement du modèle GGUF
|
61 |
llm = LlamaCPP(
|
62 |
model_url="https://huggingface.co/TheBloke/CodeLlama-7B-Instruct-GGUF/resolve/main/codellama-7b-instruct.Q4_K_M.gguf",
|
63 |
temperature=0.1,
|
@@ -67,35 +65,42 @@ async def chunk_text(data: ChunkRequest):
|
|
67 |
model_kwargs={"n_gpu_layers": 1},
|
68 |
)
|
69 |
|
70 |
-
print("✅ Modèle
|
71 |
|
72 |
-
# ✅
|
73 |
class SimpleEmbedding:
|
74 |
def get_text_embedding(self, text: str):
|
75 |
return get_embedding(text)
|
76 |
|
77 |
-
# ✅ Configuration
|
78 |
-
assert isinstance(llm, BaseLLM), "❌
|
79 |
Settings.llm = llm
|
80 |
Settings.embed_model = SimpleEmbedding()
|
81 |
|
82 |
-
print("✅ Configuration du LLM et de l'embedding terminée.
|
83 |
|
84 |
-
|
85 |
doc = Document(text=data.text)
|
86 |
|
|
|
|
|
|
|
87 |
try:
|
88 |
nodes = parser.get_nodes_from_documents([doc])
|
89 |
print(f"✅ Semantic Splitter : {len(nodes)} chunks générés")
|
90 |
if not nodes:
|
91 |
-
raise ValueError("Aucun chunk
|
|
|
92 |
except Exception as e:
|
93 |
-
print(f"⚠️ Fallback vers
|
94 |
-
splitter =
|
|
|
|
|
|
|
95 |
nodes = splitter.get_nodes_from_documents([doc])
|
96 |
print(f"♻️ Recursive Splitter : {len(nodes)} chunks générés")
|
97 |
|
98 |
-
# ✅
|
99 |
return {
|
100 |
"chunks": [node.text for node in nodes],
|
101 |
"metadatas": [node.metadata for node in nodes],
|
@@ -103,14 +108,14 @@ async def chunk_text(data: ChunkRequest):
|
|
103 |
"titre": data.titre,
|
104 |
"source": data.source,
|
105 |
"type": data.type,
|
106 |
-
"error": None #
|
107 |
}
|
108 |
|
109 |
except Exception as e:
|
110 |
print(f"❌ Erreur critique : {e}")
|
111 |
return {"error": str(e)}
|
112 |
|
113 |
-
# ✅ Lancement
|
114 |
if __name__ == "__main__":
|
115 |
import uvicorn
|
116 |
uvicorn.run("app:app", host="0.0.0.0", port=7860)
|
|
|
4 |
from pydantic import BaseModel
|
5 |
from typing import Optional
|
6 |
|
7 |
+
# ✅ LlamaIndex (version >= 0.10.0)
|
8 |
from llama_index.core import Document
|
9 |
from llama_index.core.settings import Settings
|
10 |
+
from llama_index.core.node_parser import SemanticSplitterNodeParser, RecursiveCharacterTextSplitter
|
|
|
11 |
from llama_index.llms.llama_cpp import LlamaCPP
|
12 |
from llama_index.core.base.llms.base import BaseLLM
|
13 |
|
14 |
+
# ✅ Embedding local (basé sur transformers + torch)
|
15 |
from transformers import AutoTokenizer, AutoModel
|
16 |
import torch
|
17 |
import torch.nn.functional as F
|
18 |
import os
|
19 |
|
20 |
+
# ✅ Initialisation de l'application FastAPI
|
21 |
app = FastAPI()
|
22 |
|
23 |
+
# ✅ Configuration du cache local de Hugging Face pour économiser l'espace dans le container
|
24 |
CACHE_DIR = "/app/cache"
|
25 |
os.environ["HF_HOME"] = CACHE_DIR
|
26 |
os.environ["TRANSFORMERS_CACHE"] = CACHE_DIR
|
27 |
os.environ["HF_MODULES_CACHE"] = CACHE_DIR
|
28 |
os.environ["HF_HUB_CACHE"] = CACHE_DIR
|
29 |
|
30 |
+
# ✅ Modèle d'embedding local utilisé pour vectoriser les textes
|
31 |
MODEL_NAME = "BAAI/bge-small-en-v1.5"
|
32 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, cache_dir=CACHE_DIR)
|
33 |
model = AutoModel.from_pretrained(MODEL_NAME, cache_dir=CACHE_DIR)
|
34 |
|
|
|
35 |
def get_embedding(text: str):
|
36 |
+
"""Fonction pour générer un embedding dense normalisé à partir d’un texte."""
|
37 |
with torch.no_grad():
|
38 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
39 |
outputs = model(**inputs)
|
40 |
+
embeddings = outputs.last_hidden_state[:, 0] # On prend le vecteur [CLS]
|
41 |
return F.normalize(embeddings, p=2, dim=1).squeeze().tolist()
|
42 |
|
43 |
+
# ✅ Schéma des données attendues dans le POST
|
44 |
class ChunkRequest(BaseModel):
|
45 |
text: str
|
46 |
max_tokens: Optional[int] = 1000
|
|
|
50 |
source: Optional[str] = None
|
51 |
type: Optional[str] = None
|
52 |
|
|
|
53 |
@app.post("/chunk")
|
54 |
async def chunk_text(data: ChunkRequest):
|
55 |
try:
|
56 |
print(f"\n✅ Texte reçu ({len(data.text)} caractères) : {data.text[:200]}...", flush=True)
|
57 |
|
58 |
+
# ✅ Chargement du modèle LLM CodeLlama quantifié (GGUF) via URL Hugging Face
|
59 |
llm = LlamaCPP(
|
60 |
model_url="https://huggingface.co/TheBloke/CodeLlama-7B-Instruct-GGUF/resolve/main/codellama-7b-instruct.Q4_K_M.gguf",
|
61 |
temperature=0.1,
|
|
|
65 |
model_kwargs={"n_gpu_layers": 1},
|
66 |
)
|
67 |
|
68 |
+
print("✅ Modèle CodeLlama-7B chargé avec succès !")
|
69 |
|
70 |
+
# ✅ Embedding local pour LlamaIndex
|
71 |
class SimpleEmbedding:
|
72 |
def get_text_embedding(self, text: str):
|
73 |
return get_embedding(text)
|
74 |
|
75 |
+
# ✅ Configuration du moteur dans LlamaIndex
|
76 |
+
assert isinstance(llm, BaseLLM), "❌ Le LLM n'est pas compatible avec Settings.llm"
|
77 |
Settings.llm = llm
|
78 |
Settings.embed_model = SimpleEmbedding()
|
79 |
|
80 |
+
print("✅ Configuration du LLM et de l'embedding terminée.")
|
81 |
|
82 |
+
# ✅ Document à découper
|
83 |
doc = Document(text=data.text)
|
84 |
|
85 |
+
# ✅ Split intelligent (semantic)
|
86 |
+
parser = SemanticSplitterNodeParser.from_defaults(llm=llm)
|
87 |
+
|
88 |
try:
|
89 |
nodes = parser.get_nodes_from_documents([doc])
|
90 |
print(f"✅ Semantic Splitter : {len(nodes)} chunks générés")
|
91 |
if not nodes:
|
92 |
+
raise ValueError("Aucun chunk généré par SemanticSplitter")
|
93 |
+
|
94 |
except Exception as e:
|
95 |
+
print(f"⚠️ Fallback vers RecursiveCharacterTextSplitter suite à : {e}")
|
96 |
+
splitter = RecursiveCharacterTextSplitter(
|
97 |
+
chunk_size=data.max_tokens,
|
98 |
+
chunk_overlap=data.overlap
|
99 |
+
)
|
100 |
nodes = splitter.get_nodes_from_documents([doc])
|
101 |
print(f"♻️ Recursive Splitter : {len(nodes)} chunks générés")
|
102 |
|
103 |
+
# ✅ Construction de la réponse
|
104 |
return {
|
105 |
"chunks": [node.text for node in nodes],
|
106 |
"metadatas": [node.metadata for node in nodes],
|
|
|
108 |
"titre": data.titre,
|
109 |
"source": data.source,
|
110 |
"type": data.type,
|
111 |
+
"error": None # utile pour n8n ou tout autre client
|
112 |
}
|
113 |
|
114 |
except Exception as e:
|
115 |
print(f"❌ Erreur critique : {e}")
|
116 |
return {"error": str(e)}
|
117 |
|
118 |
+
# ✅ Lancement du serveur si exécution directe (mode debug)
|
119 |
if __name__ == "__main__":
|
120 |
import uvicorn
|
121 |
uvicorn.run("app:app", host="0.0.0.0", port=7860)
|