Spaces:
Sleeping
Sleeping
File size: 1,635 Bytes
acb8d17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import os
import whisper
import gradio as gr
import requests
from gtts import gTTS
# Load Whisper model
model = whisper.load_model("base")
# Read Groq API Key from environment variable
GROQ_API_KEY = os.getenv("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")
client= GROQ(API_KEY=GROQ_API_KEY)
# Main function: audio β text β LLM β speech
def transcribe_and_respond(audio_file):
# 1. Transcribe audio
result = model.transcribe(audio_file)
user_text = result["text"]
# 2. Query Groq LLM
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {GROQ_API_KEY}"
}
data = {
"model": "llama-3.3-70b-versatile",
"messages": [{"role": "user", "content": user_text}]
}
response = requests.post("https://api.groq.com/openai/v1/chat/completions", headers=headers, json=data)
if response.status_code == 200:
output_text = response.json()['choices'][0]['message']['content']
else:
output_text = f"Error from Groq API: {response.status_code} - {response.text}"
# 3. Convert to speech
tts = gTTS(text=output_text, lang='en')
tts_path = "response.mp3"
tts.save(tts_path)
return output_text, tts_path
# Gradio UI
iface = gr.Interface(
fn=transcribe_and_respond,
inputs=gr.Audio(type="filepath", label="ποΈ Speak"),
outputs=[gr.Textbox(label="π§ LLM Reply"), gr.Audio(label="π Spoken Response")],
title="Voice Chatbot with Whisper + Groq + gTTS",
description="Click to record β Get LLM reply β Hear it spoken back"
)
if __name__ == "__main__":
iface.launch()
|