Spaces:
Sleeping
Sleeping
File size: 1,621 Bytes
acb8d17 4d13ea4 acb8d17 4d13ea4 acb8d17 4d13ea4 acb8d17 4d13ea4 acb8d17 4d13ea4 acb8d17 4d13ea4 acb8d17 4d13ea4 acb8d17 4d13ea4 acb8d17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import os
import whisper
import gradio as gr
import requests
from gtts import gTTS
# Load Whisper model (base is a good balance of speed + quality)
model = whisper.load_model("base")
# Put your actual Groq API key here
GROQ_API_KEY = "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"
def transcribe_and_respond(audio_file):
# 1. Transcribe audio to text
result = model.transcribe(audio_file)
user_text = result["text"]
# 2. Send to Groq LLM (LLaMA 3.3 70B)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {GROQ_API_KEY}"
}
data = {
"model": "llama-3.3-70b-versatile",
"messages": [{"role": "user", "content": user_text}]
}
response = requests.post("https://api.groq.com/openai/v1/chat/completions", headers=headers, json=data)
if response.status_code == 200:
output_text = response.json()['choices'][0]['message']['content']
else:
output_text = f"Error: {response.status_code} - {response.text}"
# 3. Convert reply to speech
tts = gTTS(text=output_text, lang='en')
tts_path = "response.mp3"
tts.save(tts_path)
return output_text, tts_path
# Gradio interface
iface = gr.Interface(
fn=transcribe_and_respond,
inputs=gr.Audio(type="filepath", label="🎙️ Speak"),
outputs=[gr.Textbox(label="🧠 LLM Reply"), gr.Audio(label="🔊 Spoken Response")],
title="Voice-to-Voice Chatbot (Whisper + Groq + gTTS)",
description="Record your voice, get a reply from LLaMA 3.3 70B, and hear it spoken back!"
)
if __name__ == "__main__":
iface.launch()
|