File size: 5,712 Bytes
1b77b3b 76cad5e 1b77b3b 76cad5e 1b77b3b 76cad5e 1b77b3b 76cad5e 1b77b3b 76cad5e 1b77b3b 76cad5e 1b77b3b 76cad5e 1b77b3b 76cad5e 1b77b3b 76cad5e 1b77b3b 76cad5e 6d0481d 76cad5e 6d0481d 76cad5e 6d0481d 76cad5e 1b77b3b 6d0481d 1b77b3b 76cad5e 1b77b3b 76cad5e 1b77b3b 76cad5e 1b77b3b 76cad5e 1b77b3b 76cad5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
from flask import Flask, request, jsonify
import torch
from transformers import RobertaTokenizer, RobertaForSequenceClassification
import os
from functools import lru_cache
app = Flask(__name__)
model = None
tokenizer = None
device = None
def setup_device():
if torch.cuda.is_available():
return torch.device('cuda')
elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
return torch.device('mps')
else:
return torch.device('cpu')
def load_tokenizer():
try:
tokenizer = RobertaTokenizer.from_pretrained('./tokenizer_vulnerability')
tokenizer.model_max_length = 512
return tokenizer
except Exception as e:
print(f"Error loading tokenizer: {e}")
return RobertaTokenizer.from_pretrained('microsoft/codebert-base')
def load_model():
global device
device = setup_device()
print(f"Using device: {device}")
try:
checkpoint = torch.load("codebert_vulnerability_scorer.pth", map_location=device)
if 'config' in checkpoint:
from transformers import RobertaConfig
config = RobertaConfig.from_dict(checkpoint['config'])
model = RobertaForSequenceClassification(config)
else:
model = RobertaForSequenceClassification.from_pretrained(
'microsoft/codebert-base',
num_labels=1
)
if 'model_state_dict' in checkpoint:
model.load_state_dict(checkpoint['model_state_dict'])
else:
model.load_state_dict(checkpoint)
model.to(device)
model.eval()
if device.type == 'cuda':
model.half()
return model
except Exception as e:
print(f"Error loading model: {e}")
raise e
@lru_cache(maxsize=1000)
def cached_tokenize(code_hash, max_length):
code = code_hash
return tokenizer(
code,
truncation=True,
padding='max_length',
max_length=max_length,
return_tensors='pt'
)
try:
print("Loading tokenizer...")
tokenizer = load_tokenizer()
print("Tokenizer loaded successfully!")
print("Loading model...")
model = load_model()
print("Model loaded successfully!")
except Exception as e:
print(f"Error during initialization: {str(e)}")
tokenizer = None
model = None
@app.route("/", methods=['GET'])
def home():
return jsonify({
"message": "CodeBERT Vulnerability Evalutor API",
"status": "Model loaded" if model is not None else "Model not loaded",
"device": str(device) if device else "unknown",
"endpoints": {
"/predict": "POST with JSON body containing 'codes' array"
}
})
@app.route("/predict", methods=['POST'])
def predict_batch():
try:
if model is None or tokenizer is None:
return jsonify({"error": "Model not loaded properly"}), 500
data = request.get_json()
if not data or 'codes' not in data:
return jsonify({"error": "Missing 'codes' field in JSON body"}), 400
codes = data['codes']
if not isinstance(codes, list) or len(codes) == 0:
return jsonify({"error": "'codes' must be a non-empty array"}), 400
batch_size = min(len(codes), 16)
results = []
for i in range(0, len(codes), batch_size):
batch = codes[i:i+batch_size]
scores = predict_vulnerability_batch(batch)
for j, score in enumerate(scores):
results.append({
"score": score
})
return jsonify({"results": results})
except Exception as e:
return jsonify({"error": f"Batch prediction error: {str(e)}"}), 500
def predict_vulnerability(code):
dynamic_length = min(max(len(code.split()) * 2, 128), 512)
inputs = tokenizer(
code,
truncation=True,
padding='max_length',
max_length=dynamic_length,
return_tensors='pt'
)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
with torch.cuda.amp.autocast() if device.type == 'cuda' else torch.no_grad():
outputs = model(**inputs)
if hasattr(outputs, 'logits'):
score = torch.sigmoid(outputs.logits).cpu().item()
else:
score = torch.sigmoid(outputs[0]).cpu().item()
return round(score, 4)
def predict_vulnerability_batch(codes):
max_len = max([len(code.split()) * 2 for code in codes])
dynamic_length = min(max(max_len, 128), 512)
inputs = tokenizer(
codes,
truncation=True,
padding='max_length',
max_length=dynamic_length,
return_tensors='pt'
)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
with torch.cuda.amp.autocast() if device.type == 'cuda' else torch.no_grad():
outputs = model(**inputs)
if hasattr(outputs, 'logits'):
scores = torch.sigmoid(outputs.logits).cpu().numpy()
else:
scores = torch.sigmoid(outputs[0]).cpu().numpy()
return [round(float(score), 4) for score in scores.flatten()]
@app.route("/health", methods=['GET'])
def health_check():
return jsonify({
"status": "healthy",
"model_loaded": model is not None,
"tokenizer_loaded": tokenizer is not None,
"device": str(device) if device else "unknown"
})
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860, debug=False, threaded=True) |