File size: 7,851 Bytes
1b77b3b
 
76cad5e
1b77b3b
76cad5e
1b77b3b
 
 
76cad5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b77b3b
76cad5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b77b3b
76cad5e
 
 
 
 
 
 
 
 
 
1b77b3b
 
76cad5e
 
 
 
 
1b77b3b
76cad5e
 
1b77b3b
76cad5e
 
 
1b77b3b
76cad5e
1b77b3b
76cad5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b77b3b
76cad5e
 
1b77b3b
76cad5e
 
 
1b77b3b
 
 
76cad5e
 
 
 
 
 
 
 
 
 
 
1b77b3b
76cad5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b77b3b
76cad5e
 
 
 
 
 
 
1b77b3b
76cad5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b77b3b
76cad5e
 
 
 
 
 
 
1b77b3b
76cad5e
 
 
 
 
 
 
 
1b77b3b
 
76cad5e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
from flask import Flask, request, jsonify
import torch
from transformers import RobertaTokenizer, RobertaForSequenceClassification
import os
from functools import lru_cache

app = Flask(__name__)

model = None
tokenizer = None
device = None

def setup_device():
    if torch.cuda.is_available():
        return torch.device('cuda')
    elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
        return torch.device('mps')
    else:
        return torch.device('cpu')

def load_tokenizer():
    try:
        tokenizer = RobertaTokenizer.from_pretrained('./tokenizer_vulnerability')
        tokenizer.model_max_length = 512
        return tokenizer
    except Exception as e:
        print(f"Error loading tokenizer: {e}")
        return RobertaTokenizer.from_pretrained('microsoft/codebert-base')

def load_model():
    global device
    device = setup_device()
    print(f"Using device: {device}")
    
    try:
        checkpoint = torch.load("codebert_vulnerability_scorer.pth", map_location=device)
        
        if 'config' in checkpoint:
            from transformers import RobertaConfig
            config = RobertaConfig.from_dict(checkpoint['config'])
            model = RobertaForSequenceClassification(config)
        else:
            model = RobertaForSequenceClassification.from_pretrained(
                'microsoft/codebert-base',
                num_labels=1
            )
        
        if 'model_state_dict' in checkpoint:
            model.load_state_dict(checkpoint['model_state_dict'])
        else:
            model.load_state_dict(checkpoint)
            
        model.to(device)
        model.eval()
        
        if device.type == 'cuda':
            model.half()
        
        return model
        
    except Exception as e:
        print(f"Error loading model: {e}")
        raise e

@lru_cache(maxsize=1000)
def cached_tokenize(code_hash, max_length):
    code = code_hash
    return tokenizer(
        code,
        truncation=True,
        padding='max_length',
        max_length=max_length,
        return_tensors='pt'
    )

try:
    print("Loading tokenizer...")
    tokenizer = load_tokenizer()
    print("Tokenizer loaded successfully!")
    
    print("Loading model...")
    model = load_model()
    print("Model loaded successfully!")
    
except Exception as e:
    print(f"Error during initialization: {str(e)}")
    tokenizer = None
    model = None

@app.route("/", methods=['GET'])
def home():
    return jsonify({
        "message": "CodeBERT Vulnerability Scorer API",
        "status": "Model loaded" if model is not None else "Model not loaded",
        "device": str(device) if device else "unknown",
        "endpoints": {
            "/predict": "POST with JSON body containing 'code' field",
            "/predict_batch": "POST with JSON body containing 'codes' array",
            "/predict_get": "GET with 'code' URL parameter"
        }
    })

@app.route("/predict", methods=['POST'])
def predict_post():
    try:
        if model is None or tokenizer is None:
            return jsonify({"error": "Model not loaded properly"}), 500
            
        data = request.get_json()
        if not data or 'code' not in data:
            return jsonify({"error": "Missing 'code' field in JSON body"}), 400
            
        code = data['code']
        if not code or not isinstance(code, str):
            return jsonify({"error": "'code' field must be a non-empty string"}), 400
            
        score = predict_vulnerability(code)
        
        return jsonify({
            "score": score,
            "vulnerability_level": get_vulnerability_level(score),
            "code_preview": code[:200] + "..." if len(code) > 200 else code
        })
        
    except Exception as e:
        return jsonify({"error": f"Prediction error: {str(e)}"}), 500

@app.route("/predict_batch", methods=['POST'])
def predict_batch():
    try:
        if model is None or tokenizer is None:
            return jsonify({"error": "Model not loaded properly"}), 500
            
        data = request.get_json()
        if not data or 'codes' not in data:
            return jsonify({"error": "Missing 'codes' field in JSON body"}), 400
            
        codes = data['codes']
        if not isinstance(codes, list) or len(codes) == 0:
            return jsonify({"error": "'codes' must be a non-empty array"}), 400
            
        batch_size = min(len(codes), 16)
        results = []
        
        for i in range(0, len(codes), batch_size):
            batch = codes[i:i+batch_size]
            scores = predict_vulnerability_batch(batch)
            
            for j, score in enumerate(scores):
                results.append({
                    "index": i + j,
                    "score": score,
                    "vulnerability_level": get_vulnerability_level(score),
                    "code_preview": batch[j][:100] + "..." if len(batch[j]) > 100 else batch[j]
                })
        
        return jsonify({"results": results})
        
    except Exception as e:
        return jsonify({"error": f"Batch prediction error: {str(e)}"}), 500

@app.route("/predict_get", methods=['GET'])
def predict_get():
    try:
        if model is None or tokenizer is None:
            return jsonify({"error": "Model not loaded properly"}), 500
            
        code = request.args.get("code")
        if not code:
            return jsonify({"error": "Missing 'code' URL parameter"}), 400
            
        score = predict_vulnerability(code)
        
        return jsonify({
            "score": score,
            "vulnerability_level": get_vulnerability_level(score),
            "code_preview": code[:200] + "..." if len(code) > 200 else code
        })
        
    except Exception as e:
        return jsonify({"error": f"Prediction error: {str(e)}"}), 500

def predict_vulnerability(code):
    dynamic_length = min(max(len(code.split()) * 2, 128), 512)
    
    inputs = tokenizer(
        code,
        truncation=True,
        padding='max_length',
        max_length=dynamic_length,
        return_tensors='pt'
    )
    
    inputs = {k: v.to(device) for k, v in inputs.items()}
    
    with torch.no_grad():
        with torch.cuda.amp.autocast() if device.type == 'cuda' else torch.no_grad():
            outputs = model(**inputs)
    
    if hasattr(outputs, 'logits'):
        score = torch.sigmoid(outputs.logits).cpu().item()
    else:
        score = torch.sigmoid(outputs[0]).cpu().item()
    
    return round(score, 4)

def predict_vulnerability_batch(codes):
    max_len = max([len(code.split()) * 2 for code in codes])
    dynamic_length = min(max(max_len, 128), 512)
    
    inputs = tokenizer(
        codes,
        truncation=True,
        padding='max_length',
        max_length=dynamic_length,
        return_tensors='pt'
    )
    
    inputs = {k: v.to(device) for k, v in inputs.items()}
    
    with torch.no_grad():
        with torch.cuda.amp.autocast() if device.type == 'cuda' else torch.no_grad():
            outputs = model(**inputs)
    
    if hasattr(outputs, 'logits'):
        scores = torch.sigmoid(outputs.logits).cpu().numpy()
    else:
        scores = torch.sigmoid(outputs[0]).cpu().numpy()
    
    return [round(float(score), 4) for score in scores.flatten()]

def get_vulnerability_level(score):
    if score < 0.3:
        return "Low"
    elif score < 0.7:
        return "Medium"
    else:
        return "High"

@app.route("/health", methods=['GET'])
def health_check():
    return jsonify({
        "status": "healthy",
        "model_loaded": model is not None,
        "tokenizer_loaded": tokenizer is not None,
        "device": str(device) if device else "unknown"
    })

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=7860, debug=False, threaded=True)