File size: 10,807 Bytes
1b77b3b
 
76cad5e
1b77b3b
0d168b4
76cad5e
1b77b3b
 
 
76cad5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d168b4
 
 
 
 
76cad5e
1b77b3b
76cad5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d168b4
1b77b3b
0d168b4
 
 
 
1b77b3b
 
76cad5e
 
0d168b4
 
 
 
76cad5e
 
1b77b3b
0d168b4
 
 
 
76cad5e
1b77b3b
76cad5e
 
 
1b77b3b
76cad5e
1b77b3b
76cad5e
6d0481d
76cad5e
 
 
6d0481d
76cad5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d168b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ce7217
0d168b4
 
76cad5e
 
0d168b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c6e390
0d168b4
 
 
 
 
 
76cad5e
 
 
 
0d168b4
76cad5e
1b77b3b
0d168b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b77b3b
76cad5e
0d168b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c6e390
0e1e673
d8bd17f
0d168b4
 
 
 
1b77b3b
76cad5e
0d168b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c6e390
0e1e673
 
d8bd17f
0d168b4
 
 
 
1b77b3b
76cad5e
 
 
 
 
 
 
 
1b77b3b
 
76cad5e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
from flask import Flask, request, jsonify
import torch
from transformers import RobertaTokenizer, RobertaForSequenceClassification
import os
import gc
from functools import lru_cache

app = Flask(__name__)

model = None
tokenizer = None
device = None

def setup_device():
    if torch.cuda.is_available():
        return torch.device('cuda')
    elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
        return torch.device('mps')
    else:
        return torch.device('cpu')

def load_tokenizer():
    try:
        tokenizer = RobertaTokenizer.from_pretrained('./tokenizer_vulnerability')
        tokenizer.model_max_length = 512
        return tokenizer
    except Exception as e:
        print(f"Error loading tokenizer: {e}")
        try:
            return RobertaTokenizer.from_pretrained('microsoft/codebert-base')
        except Exception as e2:
            print(f"Fallback tokenizer failed: {e2}")
            return None

def load_model():
    global device
    device = setup_device()
    print(f"Using device: {device}")
    
    try:
        checkpoint = torch.load("codebert_vulnerability_scorer.pth", map_location=device)
        
        if 'config' in checkpoint:
            from transformers import RobertaConfig
            config = RobertaConfig.from_dict(checkpoint['config'])
            model = RobertaForSequenceClassification(config)
        else:
            model = RobertaForSequenceClassification.from_pretrained(
                'microsoft/codebert-base',
                num_labels=1
            )
        
        if 'model_state_dict' in checkpoint:
            model.load_state_dict(checkpoint['model_state_dict'])
        else:
            model.load_state_dict(checkpoint)
            
        model.to(device)
        model.eval()
        
        if device.type == 'cuda':
            model.half()
        
        return model
        
    except Exception as e:
        print(f"Error loading model: {e}")
        return None

def cleanup_gpu_memory():
    if device and device.type == 'cuda':
        torch.cuda.empty_cache()
    gc.collect()

try:
    print("Loading tokenizer...")
    tokenizer = load_tokenizer()
    if tokenizer:
        print("Tokenizer loaded successfully!")
    else:
        print("Failed to load tokenizer!")
    
    print("Loading model...")
    model = load_model()
    if model:
        print("Model loaded successfully!")
    else:
        print("Failed to load model!")
    
except Exception as e:
    print(f"Error during initialization: {str(e)}")
    tokenizer = None
    model = None

@app.route("/", methods=['GET'])
def home():
    return jsonify({
        "message": "CodeBERT Vulnerability Evalutor API",
        "status": "Model loaded" if model is not None else "Model not loaded",
        "device": str(device) if device else "unknown",
        "endpoints": {
            "/predict": "POST with JSON body containing 'codes' array"
        }
    })

@app.route("/predict", methods=['POST'])
def predict_batch():
    try:
        if model is None or tokenizer is None:
            return jsonify({"error": "Model not loaded properly"}), 500
            
        data = request.get_json()
        if not data or 'codes' not in data:
            return jsonify({"error": "Missing 'codes' field in JSON body"}), 400
            
        codes = data['codes']
        if not isinstance(codes, list) or len(codes) == 0:
            return jsonify({"error": "'codes' must be a non-empty array"}), 400
        
        if len(codes) > 100:
            return jsonify({"error": "Too many codes. Maximum 100 allowed."}), 400
        
        validated_codes = []
        for i, code in enumerate(codes):
            if not isinstance(code, str):
                return jsonify({"error": f"Code at index {i} must be a string"}), 400
            if len(code.strip()) == 0:
                validated_codes.append("# empty code")
            elif len(code) > 50000:
                return jsonify({"error": f"Code at index {i} too long. Maximum 50000 characters."}), 400
            else:
                validated_codes.append(code.strip())
        
        if len(validated_codes) == 1:
            score = predict_vulnerability_with_chunking(validated_codes[0])
            cleanup_gpu_memory()
            return jsonify({"results": [{"score": 1.0 - score}]})
        
        batch_size = min(len(validated_codes), 16)
        results = []
        
        try:
            for i in range(0, len(validated_codes), batch_size):
                batch = validated_codes[i:i+batch_size]
                
                long_codes = []
                short_codes = []
                long_indices = []
                short_indices = []
                
                for idx, code in enumerate(batch):
                    try:
                        tokens = tokenizer.encode(code, add_special_tokens=False, max_length=1000, truncation=True)
                        if len(tokens) > 450:
                            long_codes.append(code)
                            long_indices.append(i + idx)
                        else:
                            short_codes.append(code)
                            short_indices.append(i + idx)
                    except Exception as e:
                        print(f"Tokenization error for code {i + idx}: {e}")
                        short_codes.append(code)
                        short_indices.append(i + idx)
                
                batch_scores = [0.0] * len(batch)
                
                if short_codes:
                    try:
                        short_scores = predict_vulnerability_batch(short_codes)
                        for j, score in enumerate(short_scores):
                            local_idx = short_indices[j] - i
                            batch_scores[local_idx] = score
                    except Exception as e:
                        print(f"Batch prediction error: {e}")
                        for j in range(len(short_codes)):
                            local_idx = short_indices[j] - i
                            batch_scores[local_idx] = 0.0
                
                for j, code in enumerate(long_codes):
                    try:
                        score = predict_vulnerability_with_chunking(code)
                        local_idx = long_indices[j] - i
                        batch_scores[local_idx] = score
                    except Exception as e:
                        print(f"Chunking prediction error: {e}")
                        local_idx = long_indices[j] - i
                        batch_scores[local_idx] = 0.0
                
                for score in batch_scores:
                    results.append({"score": round(1.0 - score,4)})
                
                cleanup_gpu_memory()
        
        except Exception as e:
            cleanup_gpu_memory()
            raise e
        
        return jsonify({"results": results})
        
    except Exception as e:
        cleanup_gpu_memory()
        return jsonify({"error": f"Batch prediction error: {str(e)}"}), 500

def predict_vulnerability_with_chunking(code):
    try:
        if not code or len(code.strip()) == 0:
            return 0.0
            
        tokens = tokenizer.encode(code, add_special_tokens=False, max_length=2000, truncation=True)
        
        if len(tokens) <= 450:
            return predict_vulnerability(code)
        
        chunk_size = 400
        overlap = 50
        max_score = 0.0
        
        for start in range(0, len(tokens), chunk_size - overlap):
            end = min(start + chunk_size, len(tokens))
            chunk_tokens = tokens[start:end]
            
            try:
                chunk_code = tokenizer.decode(chunk_tokens, skip_special_tokens=True)
                if chunk_code.strip():
                    score = predict_vulnerability(chunk_code)
                    max_score = max(max_score, score)
            except Exception as e:
                print(f"Chunk processing error: {e}")
                continue
            
            if end >= len(tokens):
                break
        
        return max_score
        
    except Exception as e:
        print(f"Chunking error: {e}")
        return 0.0

def predict_vulnerability(code):
    try:
        if not code or len(code.strip()) == 0:
            return 0.0
            
        dynamic_length = min(max(len(code.split()) * 2, 128), 512)
        
        inputs = tokenizer(
            code,
            truncation=True,
            padding='max_length',
            max_length=dynamic_length,
            return_tensors='pt'
        )
        
        inputs = {k: v.to(device) for k, v in inputs.items()}
        
        with torch.no_grad():
            if device.type == 'cuda':
                with torch.cuda.amp.autocast():
                    outputs = model(**inputs)
            else:
                outputs = model(**inputs)
        
        amplified_logits = 2.0 * outputs.logits
        score = torch.sigmoid(amplified_logits).cpu().item()
        return round(max(0.0, min(1.0, score)), 4)
        
    except Exception as e:
        print(f"Single prediction error: {e}")
        return 0.0

def predict_vulnerability_batch(codes):
    try:
        if not codes or len(codes) == 0:
            return []
            
        filtered_codes = [code if code and code.strip() else "# empty" for code in codes]
        
        max_len = max([len(code.split()) * 2 for code in filtered_codes if code])
        dynamic_length = min(max(max_len, 128), 512)
        
        inputs = tokenizer(
            filtered_codes,
            truncation=True,
            padding='max_length',
            max_length=dynamic_length,
            return_tensors='pt'
        )
        
        inputs = {k: v.to(device) for k, v in inputs.items()}
        
        with torch.no_grad():
            if device.type == 'cuda':
                with torch.cuda.amp.autocast():
                    outputs = model(**inputs)
            else:
                outputs = model(**inputs)
        
        amplified_logits = 2.0 * outputs.logits
        scores = torch.sigmoid(amplified_logits).cpu().numpy()

        return [round(max(0.0, min(1.0, float(score))), 4) for score in scores.flatten()]
        
    except Exception as e:
        print(f"Batch prediction error: {e}")
        return [0.0] * len(codes)

@app.route("/health", methods=['GET'])
def health_check():
    return jsonify({
        "status": "healthy",
        "model_loaded": model is not None,
        "tokenizer_loaded": tokenizer is not None,
        "device": str(device) if device else "unknown"
    })

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=7860, debug=False, threaded=True)