demo-updated / score_utilizer.py
Kazel's picture
logging
4e19c9e
raw
history blame
12.9 kB
#!/usr/bin/env python3
"""
Score Utilizer - Extract and utilize highest-scoring pages from retrieval logs
This module provides utilities to parse log outputs and retrieve the best pages based on scores.
"""
import re
import json
from typing import List, Dict, Tuple, Optional
class ScoreUtilizer:
"""
Utility class to extract and utilize highest-scoring pages from retrieval logs
"""
def __init__(self):
self.score_patterns = {
'page_score': r'Page\s+(\d+)\s+\(doc_id:\s*(\d+)\)\s*\|\s*Score:\s*([\d.]+)',
'highest_scoring': r'(\d+)\.\s*Page\s+(\d+)\s+-\s*Score:\s*([\d.]+)',
'relevance_level': r'([πŸŸ’πŸŸ‘πŸŸ πŸ”΅πŸŸ£πŸ”΄])\s+([A-Z\s]+)\s+-\s+(.+)'
}
def parse_log_output(self, log_text: str) -> Dict:
"""
Parse log output to extract page scores and relevance information
Args:
log_text: Raw log output from the retrieval system
Returns:
Dictionary containing parsed page scores and metadata
"""
print("πŸ” PARSING LOG OUTPUT FOR HIGHEST-SCORING PAGES")
print("=" * 60)
# Extract page scores
page_scores = self._extract_page_scores(log_text)
# Extract highest scoring pages
top_pages = self._extract_top_pages(log_text)
# Extract relevance distribution
relevance_dist = self._extract_relevance_distribution(log_text)
# Extract statistics
stats = self._extract_statistics(log_text)
result = {
'page_scores': page_scores,
'top_pages': top_pages,
'relevance_distribution': relevance_dist,
'statistics': stats,
'parsed_at': self._get_timestamp()
}
print(f"βœ… Successfully parsed {len(page_scores)} page scores")
print(f"πŸ† Found {len(top_pages)} top-scoring pages")
print("=" * 60)
return result
def _extract_page_scores(self, log_text: str) -> List[Dict]:
"""Extract individual page scores from log text"""
page_scores = []
# Pattern: "Page 1 (doc_id: 0) | Score: 0.9234 | 🟒 EXCELLENT - Highly relevant"
pattern = self.score_patterns['page_score']
matches = re.findall(pattern, log_text)
for match in matches:
page_num, doc_id, score = match
page_scores.append({
'page_number': int(page_num),
'doc_id': int(doc_id),
'score': float(score),
'relevance_level': self._get_relevance_level(float(score))
})
# Sort by score (highest first)
page_scores.sort(key=lambda x: x['score'], reverse=True)
return page_scores
def _extract_top_pages(self, log_text: str) -> List[Dict]:
"""Extract top-scoring pages from log text"""
top_pages = []
# Pattern: "1. Page 1 - Score: 0.9234"
pattern = self.score_patterns['highest_scoring']
matches = re.findall(pattern, log_text)
for match in matches:
rank, page_num, score = match
top_pages.append({
'rank': int(rank),
'page_number': int(page_num),
'score': float(score),
'relevance_level': self._get_relevance_level(float(score))
})
return top_pages
def _extract_relevance_distribution(self, log_text: str) -> Dict:
"""Extract relevance distribution from log text"""
distribution = {
'excellent': 0,
'very_good': 0,
'good': 0,
'moderate': 0,
'basic': 0,
'poor': 0
}
# Look for distribution lines like "🟒 Excellent (β‰₯0.90): 2 pages"
patterns = {
'excellent': r'🟒\s+Excellent.*?(\d+)\s+pages?',
'very_good': r'🟑\s+Very Good.*?(\d+)\s+pages?',
'good': r'🟠\s+Good.*?(\d+)\s+pages?',
'moderate': r'πŸ”΅\s+Moderate.*?(\d+)\s+pages?',
'basic': r'🟣\s+Basic.*?(\d+)\s+pages?',
'poor': r'πŸ”΄\s+Poor.*?(\d+)\s+pages?'
}
for level, pattern in patterns.items():
match = re.search(pattern, log_text)
if match:
distribution[level] = int(match.group(1))
return distribution
def _extract_statistics(self, log_text: str) -> Dict:
"""Extract statistical information from log text"""
stats = {}
# Extract average score
avg_match = re.search(r'Average.*?Score:\s*([\d.]+)', log_text)
if avg_match:
stats['average_score'] = float(avg_match.group(1))
# Extract highest score
high_match = re.search(r'Highest.*?Score:\s*([\d.]+)', log_text)
if high_match:
stats['highest_score'] = float(high_match.group(1))
# Extract lowest score
low_match = re.search(r'Lowest.*?Score:\s*([\d.]+)', log_text)
if low_match:
stats['lowest_score'] = float(low_match.group(1))
# Extract total pages
total_match = re.search(r'Total.*?(\d+).*?results?', log_text)
if total_match:
stats['total_pages'] = int(total_match.group(1))
return stats
def get_highest_scoring_pages(self, parsed_data: Dict, count: int = 5) -> List[Dict]:
"""
Get the highest-scoring pages from parsed data
Args:
parsed_data: Parsed log data from parse_log_output()
count: Number of top pages to return
Returns:
List of highest-scoring pages
"""
if 'page_scores' not in parsed_data:
return []
return parsed_data['page_scores'][:count]
def get_pages_by_threshold(self, parsed_data: Dict, threshold: float = 0.80) -> List[Dict]:
"""
Get pages that meet or exceed a score threshold
Args:
parsed_data: Parsed log data from parse_log_output()
threshold: Minimum score threshold
Returns:
List of pages meeting the threshold
"""
if 'page_scores' not in parsed_data:
return []
return [page for page in parsed_data['page_scores'] if page['score'] >= threshold]
def get_pages_by_relevance_level(self, parsed_data: Dict, level: str = 'excellent') -> List[Dict]:
"""
Get pages by specific relevance level
Args:
parsed_data: Parsed log data from parse_log_output()
level: Relevance level ('excellent', 'very_good', 'good', 'moderate', 'basic', 'poor')
Returns:
List of pages with the specified relevance level
"""
if 'page_scores' not in parsed_data:
return []
level_mapping = {
'excellent': '🟒 EXCELLENT',
'very_good': '🟑 VERY GOOD',
'good': '🟠 GOOD',
'moderate': 'πŸ”΅ MODERATE',
'basic': '🟣 BASIC',
'poor': 'πŸ”΄ POOR'
}
target_level = level_mapping.get(level, '🟒 EXCELLENT')
return [page for page in parsed_data['page_scores'] if target_level in page['relevance_level']]
def generate_utilization_report(self, parsed_data: Dict) -> str:
"""
Generate a comprehensive report on how to utilize the highest-scoring pages
Args:
parsed_data: Parsed log data from parse_log_output()
Returns:
Formatted report string
"""
report = []
report.append("πŸ“Š HIGHEST-SCORING PAGES UTILIZATION REPORT")
report.append("=" * 60)
# Top pages summary
top_pages = self.get_highest_scoring_pages(parsed_data, 5)
report.append(f"\nπŸ† TOP 5 HIGHEST-SCORING PAGES:")
for i, page in enumerate(top_pages, 1):
report.append(f" {i}. Page {page['page_number']} - Score: {page['score']:.4f} ({page['relevance_level']})")
# Threshold-based recommendations
excellent_pages = self.get_pages_by_threshold(parsed_data, 0.90)
very_good_pages = self.get_pages_by_threshold(parsed_data, 0.80)
report.append(f"\n🎯 UTILIZATION RECOMMENDATIONS:")
report.append(f" 🟒 Excellent pages (β‰₯0.90): {len(excellent_pages)} pages - Use for primary context")
report.append(f" 🟑 Very Good pages (β‰₯0.80): {len(very_good_pages)} pages - Use for comprehensive coverage")
# Statistics
if 'statistics' in parsed_data and parsed_data['statistics']:
stats = parsed_data['statistics']
report.append(f"\nπŸ“ˆ QUALITY METRICS:")
if 'average_score' in stats:
report.append(f" Average Score: {stats['average_score']:.4f}")
if 'highest_score' in stats:
report.append(f" Highest Score: {stats['highest_score']:.4f}")
if 'total_pages' in stats:
report.append(f" Total Pages Analyzed: {stats['total_pages']}")
# Usage suggestions
report.append(f"\nπŸ’‘ USAGE SUGGESTIONS:")
report.append(f" 1. Feed top 3 pages to language model for focused responses")
report.append(f" 2. Use excellent pages for critical information extraction")
report.append(f" 3. Include very good pages for comprehensive analysis")
report.append(f" 4. Consider page diversity for balanced coverage")
report.append("=" * 60)
return "\n".join(report)
def _get_relevance_level(self, score: float) -> str:
"""Get relevance level based on score"""
if score >= 0.90:
return "🟒 EXCELLENT - Highly relevant"
elif score >= 0.80:
return "🟑 VERY GOOD - Very relevant"
elif score >= 0.70:
return "🟠 GOOD - Relevant"
elif score >= 0.60:
return "πŸ”΅ MODERATE - Somewhat relevant"
elif score >= 0.50:
return "🟣 BASIC - Minimally relevant"
else:
return "πŸ”΄ POOR - Not relevant"
def _get_timestamp(self) -> str:
"""Get current timestamp"""
from datetime import datetime
return datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Example usage function
def demonstrate_score_utilization():
"""
Demonstrate how to use the ScoreUtilizer to extract and utilize highest-scoring pages
"""
print("πŸ§ͺ DEMONSTRATING SCORE UTILIZATION")
print("=" * 60)
# Example log output (this would come from your actual retrieval system)
example_log = """
================================================================================
πŸ“Š RETRIEVAL SCORES - PAGE NUMBERS WITH HIGHEST SCORES
================================================================================
πŸ” Collection: documents_20250101_120000
πŸ“„ Total documents found: 15
🎯 Requested top-k: 5
--------------------------------------------------------------------------------
πŸ“„ Page 1 (doc_id: 0) | Score: 0.9234 | 🟒 EXCELLENT - Highly relevant
πŸ“„ Page 3 (doc_id: 2) | Score: 0.8756 | 🟑 VERY GOOD - Very relevant
πŸ“„ Page 7 (doc_id: 6) | Score: 0.8123 | 🟑 VERY GOOD - Very relevant
πŸ“„ Page 2 (doc_id: 1) | Score: 0.7890 | 🟠 GOOD - Relevant
πŸ“„ Page 5 (doc_id: 4) | Score: 0.7456 | 🟠 GOOD - Relevant
--------------------------------------------------------------------------------
πŸ† HIGHEST SCORING PAGES:
1. Page 1 - Score: 0.9234
2. Page 3 - Score: 0.8756
3. Page 7 - Score: 0.8123
================================================================================
"""
# Initialize utilizer
utilizer = ScoreUtilizer()
# Parse the log output
parsed_data = utilizer.parse_log_output(example_log)
# Get highest-scoring pages
top_pages = utilizer.get_highest_scoring_pages(parsed_data, 3)
print(f"\nπŸ† TOP 3 HIGHEST-SCORING PAGES:")
for page in top_pages:
print(f" Page {page['page_number']} - Score: {page['score']:.4f}")
# Get pages by threshold
excellent_pages = utilizer.get_pages_by_threshold(parsed_data, 0.90)
print(f"\n🟒 EXCELLENT PAGES (β‰₯0.90): {len(excellent_pages)} pages")
# Generate utilization report
report = utilizer.generate_utilization_report(parsed_data)
print(f"\n{report}")
print("\nβœ… Score utilization demonstration completed!")
if __name__ == "__main__":
demonstrate_score_utilization()