File size: 8,214 Bytes
09402c7
2a055fd
09402c7
5bba297
2de4d81
09402c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ec9212
09402c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063931
09402c7
 
 
 
 
 
 
 
 
 
 
 
 
122cc9f
09402c7
 
 
 
 
 
 
 
 
 
122cc9f
09402c7
 
 
 
122cc9f
09402c7
 
 
 
122cc9f
09402c7
 
 
 
122cc9f
09402c7
 
 
 
122cc9f
09402c7
 
 
 
122cc9f
09402c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122cc9f
09402c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b11c9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import sys
import os
sys.path.append('./')
os.system("pip install huggingface_hub==0.24.7")
os.system("pip install gradio accelerate==0.25.0 torchmetrics==1.2.1 tqdm==4.66.1 transformers==4.36.2 diffusers==0.25 einops==0.7.0 bitsandbytes==0.39.0 scipy==1.11.1 opencv-python gradio==4.24.0 fvcore cloudpickle omegaconf pycocotools basicsr av onnxruntime==1.16.2 peft==0.11.1 huggingface_hub==0.24.7 --no-deps")
import gradio as gr
import torch
from PIL import Image
import torch.nn.functional as F
from transformers import CLIPImageProcessor

# Add necessary imports and initialize the model as in your code...
from typing import Any, Callable, Dict, List, Optional, Tuple, Union, Literal
import matplotlib.pyplot as plt


import torch.utils.data as data
import torchvision
import numpy as np
import torch
import torch.nn.functional as F
from accelerate.logging import get_logger
from accelerate.utils import  set_seed
from torchvision import transforms

from diffusers import AutoencoderKL, DDPMScheduler
from transformers import AutoTokenizer, CLIPImageProcessor, CLIPVisionModelWithProjection,CLIPTextModelWithProjection, CLIPTextModel


from src.unet_hacked_tryon import UNet2DConditionModel
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
# Define a class to hold configuration arguments
class Args:
    def __init__(self):
        self.pretrained_model_name_or_path = "yisol/IDM-VTON"
        self.width = 768
        self.height = 1024
        self.num_inference_steps = 10
        self.seed = 42
        self.guidance_scale = 2.0
        self.mixed_precision = None
        
# Determine the device to be used for computations (CUDA if available)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

logger = get_logger(__name__, log_level="INFO")

def pil_to_tensor(images):
    images = np.array(images).astype(np.float32) / 255.0
    images = torch.from_numpy(images.transpose(2, 0, 1))
    return images



args = Args()

# Define the data type for model weights
weight_dtype = torch.float32

if args.seed is not None:
        set_seed(args.seed)


# Load scheduler, tokenizer and models.
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
vae = AutoencoderKL.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="vae",
        torch_dtype=torch.float32,
         )
unet = UNet2DConditionModel.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="unet",
        torch_dtype=torch.float32,
        )
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="image_encoder",
        torch_dtype=torch.float32,
    )
unet_encoder = UNet2DConditionModel_ref.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="unet_encoder",
        torch_dtype=torch.float32,
    )
text_encoder_one = CLIPTextModel.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="text_encoder",
        torch_dtype=torch.float32,
        )
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="text_encoder_2",
        torch_dtype=torch.float32,
    )
tokenizer_one = AutoTokenizer.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="tokenizer",
        revision=None,
        use_fast=False,
    )
tokenizer_two = AutoTokenizer.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="tokenizer_2",
        revision=None,
        use_fast=False,
    )
 # Freeze vae and text_encoder and set unet to trainable
unet.requires_grad_(False)
vae.requires_grad_(False)
image_encoder.requires_grad_(False)
unet_encoder.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
unet_encoder.to(device, weight_dtype)
unet.eval()
unet_encoder.eval()

pipe = TryonPipeline.from_pretrained(
            args.pretrained_model_name_or_path,
            unet=unet,
            vae=vae,
            feature_extractor= CLIPImageProcessor(),
            text_encoder = text_encoder_one,
            text_encoder_2 = text_encoder_two,
            tokenizer = tokenizer_one,
            tokenizer_2 = tokenizer_two,
            scheduler = noise_scheduler,
            image_encoder=image_encoder,
            unet_encoder = unet_encoder,
            torch_dtype=torch.float32,
    ).to(device)
# pipe.enable_sequential_cpu_offload()
# pipe.enable_model_cpu_offload()
# pipe.enable_vae_slicing()
# Function to generate the image based on inputs
def generate_virtual_try_on(person_image, cloth_image, mask_image, pose_image,cloth_des):
    # Prepare the input images as tensors
    person_image = person_image.resize((args.width, args.height))
    cloth_image = cloth_image.resize((args.width, args.height))
    mask_image = mask_image.resize((args.width, args.height))
    pose_image = pose_image.resize((args.width, args.height))
    # Define transformations
    transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize([0.5], [0.5]),
    ])
    guidance_scale=2.0
    seed=42

    to_tensor = transforms.ToTensor()

    person_tensor = transform(person_image).unsqueeze(0).to(device)  # Add batch dimension
    cloth_pure = transform(cloth_image).unsqueeze(0).to(device)
    mask_tensor = to_tensor(mask_image)[:1].unsqueeze(0).to(device)  # Keep only one channel
    pose_tensor = transform(pose_image).unsqueeze(0).to(device)

    # Prepare text prompts
    prompt = ["A person wearing the cloth"+cloth_des]  # Example prompt
    negative_prompt = ["monochrome, lowres, bad anatomy, worst quality, low quality"]

    # Encode prompts
    with torch.inference_mode():
        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = pipe.encode_prompt(
            prompt,
            num_images_per_prompt=1,
            do_classifier_free_guidance=True,
            negative_prompt=negative_prompt,
        )
    prompt_cloth = ["a photo of"+cloth_des]
    with torch.inference_mode():
     (
        prompt_embeds_c,
        _,
        _,
        _,
     ) = pipe.encode_prompt(
        prompt_cloth,
        num_images_per_prompt=1,
        do_classifier_free_guidance=False,
        negative_prompt=negative_prompt,
    )

    # Encode garment using IP-Adapter
    clip_processor = CLIPImageProcessor()
    image_embeds = clip_processor(images=cloth_image, return_tensors="pt").pixel_values.to(device)

    # Generate the image
    generator = torch.Generator(pipe.device).manual_seed(seed) if seed is not None else None

    with torch.no_grad():
        images = pipe(
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            num_inference_steps=args.num_inference_steps,
            generator=generator,
            strength=1.0,
            pose_img=pose_tensor,
            text_embeds_cloth=prompt_embeds_c,
            cloth=cloth_pure,
            mask_image=mask_tensor,
            image=(person_tensor + 1.0) / 2.0,
            height=args.height,
            width=args.width,
            guidance_scale=guidance_scale,
            ip_adapter_image=image_embeds,
        )[0]

    # Convert output image to PIL format for display
    generated_image = transforms.ToPILImage()(images[0])
    return generated_image

# Create Gradio interface
iface = gr.Interface(
    fn=generate_virtual_try_on,
    inputs=[
        gr.Image(type="pil", label="Person Image"),
        gr.Image(type="pil", label="Cloth Image"),
        gr.Image(type="pil", label="Mask Image"),
        gr.Image(type="pil", label="Pose Image"),
        gr.Textbox(label="cloth_des"),  # Add text input


        
        
    ],
    outputs=gr.Image(type="pil", label="Generated Image"),
)

# Launch the interface
iface.launch()