SmartLuga / app.py
Keshabwi66's picture
Update app.py
2de4d81 verified
raw
history blame
8.21 kB
import sys
import os
sys.path.append('./')
os.system("pip install huggingface_hub==0.24.7")
os.system("pip install gradio accelerate==0.25.0 torchmetrics==1.2.1 tqdm==4.66.1 transformers==4.36.2 diffusers==0.25 einops==0.7.0 bitsandbytes==0.39.0 scipy==1.11.1 opencv-python gradio==4.24.0 fvcore cloudpickle omegaconf pycocotools basicsr av onnxruntime==1.16.2 peft==0.11.1 huggingface_hub==0.24.7 --no-deps")
import gradio as gr
import torch
from PIL import Image
import torch.nn.functional as F
from transformers import CLIPImageProcessor
# Add necessary imports and initialize the model as in your code...
from typing import Any, Callable, Dict, List, Optional, Tuple, Union, Literal
import matplotlib.pyplot as plt
import torch.utils.data as data
import torchvision
import numpy as np
import torch
import torch.nn.functional as F
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from torchvision import transforms
from diffusers import AutoencoderKL, DDPMScheduler
from transformers import AutoTokenizer, CLIPImageProcessor, CLIPVisionModelWithProjection,CLIPTextModelWithProjection, CLIPTextModel
from src.unet_hacked_tryon import UNet2DConditionModel
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
# Define a class to hold configuration arguments
class Args:
def __init__(self):
self.pretrained_model_name_or_path = "yisol/IDM-VTON"
self.width = 768
self.height = 1024
self.num_inference_steps = 10
self.seed = 42
self.guidance_scale = 2.0
self.mixed_precision = None
# Determine the device to be used for computations (CUDA if available)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger = get_logger(__name__, log_level="INFO")
def pil_to_tensor(images):
images = np.array(images).astype(np.float32) / 255.0
images = torch.from_numpy(images.transpose(2, 0, 1))
return images
args = Args()
# Define the data type for model weights
weight_dtype = torch.float32
if args.seed is not None:
set_seed(args.seed)
# Load scheduler, tokenizer and models.
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
torch_dtype=torch.float32,
)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="unet",
torch_dtype=torch.float32,
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="image_encoder",
torch_dtype=torch.float32,
)
unet_encoder = UNet2DConditionModel_ref.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="unet_encoder",
torch_dtype=torch.float32,
)
text_encoder_one = CLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="text_encoder",
torch_dtype=torch.float32,
)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="text_encoder_2",
torch_dtype=torch.float32,
)
tokenizer_one = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=None,
use_fast=False,
)
tokenizer_two = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer_2",
revision=None,
use_fast=False,
)
# Freeze vae and text_encoder and set unet to trainable
unet.requires_grad_(False)
vae.requires_grad_(False)
image_encoder.requires_grad_(False)
unet_encoder.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
unet_encoder.to(device, weight_dtype)
unet.eval()
unet_encoder.eval()
pipe = TryonPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=unet,
vae=vae,
feature_extractor= CLIPImageProcessor(),
text_encoder = text_encoder_one,
text_encoder_2 = text_encoder_two,
tokenizer = tokenizer_one,
tokenizer_2 = tokenizer_two,
scheduler = noise_scheduler,
image_encoder=image_encoder,
unet_encoder = unet_encoder,
torch_dtype=torch.float32,
).to(device)
# pipe.enable_sequential_cpu_offload()
# pipe.enable_model_cpu_offload()
# pipe.enable_vae_slicing()
# Function to generate the image based on inputs
def generate_virtual_try_on(person_image, cloth_image, mask_image, pose_image,cloth_des):
# Prepare the input images as tensors
person_image = person_image.resize((args.width, args.height))
cloth_image = cloth_image.resize((args.width, args.height))
mask_image = mask_image.resize((args.width, args.height))
pose_image = pose_image.resize((args.width, args.height))
# Define transformations
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
guidance_scale=2.0
seed=42
to_tensor = transforms.ToTensor()
person_tensor = transform(person_image).unsqueeze(0).to(device) # Add batch dimension
cloth_pure = transform(cloth_image).unsqueeze(0).to(device)
mask_tensor = to_tensor(mask_image)[:1].unsqueeze(0).to(device) # Keep only one channel
pose_tensor = transform(pose_image).unsqueeze(0).to(device)
# Prepare text prompts
prompt = ["A person wearing the cloth"+cloth_des] # Example prompt
negative_prompt = ["monochrome, lowres, bad anatomy, worst quality, low quality"]
# Encode prompts
with torch.inference_mode():
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt_cloth = ["a photo of"+cloth_des]
with torch.inference_mode():
(
prompt_embeds_c,
_,
_,
_,
) = pipe.encode_prompt(
prompt_cloth,
num_images_per_prompt=1,
do_classifier_free_guidance=False,
negative_prompt=negative_prompt,
)
# Encode garment using IP-Adapter
clip_processor = CLIPImageProcessor()
image_embeds = clip_processor(images=cloth_image, return_tensors="pt").pixel_values.to(device)
# Generate the image
generator = torch.Generator(pipe.device).manual_seed(seed) if seed is not None else None
with torch.no_grad():
images = pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
num_inference_steps=args.num_inference_steps,
generator=generator,
strength=1.0,
pose_img=pose_tensor,
text_embeds_cloth=prompt_embeds_c,
cloth=cloth_pure,
mask_image=mask_tensor,
image=(person_tensor + 1.0) / 2.0,
height=args.height,
width=args.width,
guidance_scale=guidance_scale,
ip_adapter_image=image_embeds,
)[0]
# Convert output image to PIL format for display
generated_image = transforms.ToPILImage()(images[0])
return generated_image
# Create Gradio interface
iface = gr.Interface(
fn=generate_virtual_try_on,
inputs=[
gr.Image(type="pil", label="Person Image"),
gr.Image(type="pil", label="Cloth Image"),
gr.Image(type="pil", label="Mask Image"),
gr.Image(type="pil", label="Pose Image"),
gr.Textbox(label="cloth_des"), # Add text input
],
outputs=gr.Image(type="pil", label="Generated Image"),
)
# Launch the interface
iface.launch()