File size: 22,100 Bytes
0e5cadd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae651c7
0e5cadd
09d9d95
397bb2f
0e5cadd
 
bb6e371
0e5cadd
 
397bb2f
0e5cadd
 
 
 
 
 
 
397bb2f
 
0e5cadd
 
 
 
 
 
 
 
 
 
397bb2f
0e5cadd
 
397bb2f
0e5cadd
 
 
 
397bb2f
 
 
 
 
 
0e5cadd
 
 
397bb2f
0e5cadd
 
 
 
 
 
 
 
 
397bb2f
 
0e5cadd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae651c7
09d9d95
0e5cadd
 
bb6e371
0e5cadd
 
397bb2f
0e5cadd
 
 
 
 
 
 
 
 
 
 
 
397bb2f
 
 
 
 
 
 
 
 
 
 
 
 
0e5cadd
397bb2f
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5cadd
397bb2f
 
0e5cadd
397bb2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5cadd
397bb2f
 
 
 
0e5cadd
397bb2f
 
 
 
 
 
 
0e5cadd
397bb2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5cadd
397bb2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5cadd
397bb2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5cadd
397bb2f
 
 
 
 
 
 
 
0e5cadd
397bb2f
 
 
 
 
 
 
 
 
 
 
 
 
0e5cadd
397bb2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5cadd
397bb2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5cadd
12a0dd9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import spaces
import gradio as gr
import numpy as np
import os
import torch
import random
import subprocess
subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)

from accelerate import infer_auto_device_map, load_checkpoint_and_dispatch, init_empty_weights
from PIL import Image

from data.data_utils import add_special_tokens, pil_img2rgb
from data.transforms import ImageTransform
from inferencer import InterleaveInferencer
from modeling.autoencoder import load_ae
from modeling.bagel.qwen2_navit import NaiveCache
from modeling.bagel import (
    BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM,
    SiglipVisionConfig, SiglipVisionModel
)
from modeling.qwen2 import Qwen2Tokenizer

from huggingface_hub import snapshot_download

save_dir = "./model"
repo_id = "ByteDance-Seed/BAGEL-7B-MoT"
cache_dir = save_dir + "/cache"

snapshot_download(cache_dir=cache_dir,
  local_dir=save_dir,
  repo_id=repo_id,
  local_dir_use_symlinks=False,
  resume_download=True,
  allow_patterns=["*.json", "*.safetensors", "*.bin", "*.py", "*.md", "*.txt"],
)

# Model Initialization
model_path = "./model" #Download from https://huggingface.co/ByteDance-Seed/BAGEL-7B-MoT

llm_config = Qwen2Config.from_json_file(os.path.join(model_path, "llm_config.json"))
llm_config.qk_norm = True
llm_config.tie_word_embeddings = False
llm_config.layer_module = "Qwen2MoTDecoderLayer"

vit_config = SiglipVisionConfig.from_json_file(os.path.join(model_path, "vit_config.json"))
vit_config.rope = False
vit_config.num_hidden_layers -= 1

vae_model, vae_config = load_ae(local_path=os.path.join(model_path, "ae.safetensors"))

config = BagelConfig(
    visual_gen=True,
    visual_und=True,
    llm_config=llm_config, 
    vit_config=vit_config,
    vae_config=vae_config,
    vit_max_num_patch_per_side=70,
    connector_act='gelu_pytorch_tanh',
    latent_patch_size=2,
    max_latent_size=64,
)

with init_empty_weights():
    language_model = Qwen2ForCausalLM(llm_config)
    vit_model      = SiglipVisionModel(vit_config)
    model          = Bagel(language_model, vit_model, config)
    model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config, meta=True)

tokenizer = Qwen2Tokenizer.from_pretrained(model_path)
tokenizer, new_token_ids, _ = add_special_tokens(tokenizer)

vae_transform = ImageTransform(1024, 512, 16)
vit_transform = ImageTransform(980, 224, 14)

# Model Loading and Multi GPU Infernece Preparing
device_map = infer_auto_device_map(
    model,
    max_memory={i: "80GiB" for i in range(torch.cuda.device_count())},
    no_split_module_classes=["Bagel", "Qwen2MoTDecoderLayer"],
)

same_device_modules = [
    'language_model.model.embed_tokens',
    'time_embedder',
    'latent_pos_embed',
    'vae2llm',
    'llm2vae',
    'connector',
    'vit_pos_embed'
]

if torch.cuda.device_count() == 1:
    first_device = device_map.get(same_device_modules[0], "cuda:0")
    for k in same_device_modules:
        if k in device_map:
            device_map[k] = first_device
        else:
            device_map[k] = "cuda:0"
else:
    first_device = device_map.get(same_device_modules[0])
    for k in same_device_modules:
        if k in device_map:
            device_map[k] = first_device
            
model = load_checkpoint_and_dispatch(
    model,
    checkpoint=os.path.join(model_path, "ema.safetensors"),
    device_map=device_map,
    offload_buffers=True,
    dtype=torch.bfloat16,
    force_hooks=True,
).eval()


# Inferencer Preparing 
inferencer = InterleaveInferencer(
    model=model,
    vae_model=vae_model,
    tokenizer=tokenizer,
    vae_transform=vae_transform,
    vit_transform=vit_transform,
    new_token_ids=new_token_ids,
)

def set_seed(seed):
    """Set random seeds for reproducibility"""
    if seed > 0:
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        if torch.cuda.is_available():
            torch.cuda.manual_seed(seed)
            torch.cuda.manual_seed_all(seed)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False
    return seed

# Text to Image function with thinking option and hyperparameters
@spaces.GPU(duration=90)
def text_to_image(prompt, show_thinking=False, cfg_text_scale=4.0, cfg_interval=0.4, 
                 timestep_shift=3.0, num_timesteps=50, 
                 cfg_renorm_min=1.0, cfg_renorm_type="global", 
                 max_think_token_n=1024, do_sample=False, text_temperature=0.3,
                 seed=0, image_ratio="1:1"):
    # Set seed for reproducibility
    set_seed(seed)

    if image_ratio == "1:1":
        image_shapes = (1024, 1024)
    elif image_ratio == "4:3":
        image_shapes = (768, 1024)
    elif image_ratio == "3:4":
        image_shapes = (1024, 768) 
    elif image_ratio == "16:9":
        image_shapes = (576, 1024)
    elif image_ratio == "9:16":
        image_shapes = (1024, 576) 
    
    # Set hyperparameters
    inference_hyper = dict(
        max_think_token_n=max_think_token_n if show_thinking else 1024,
        do_sample=do_sample if show_thinking else False,
        temperature=text_temperature if show_thinking else 0.3,
        cfg_text_scale=cfg_text_scale,
        cfg_interval=[cfg_interval, 1.0],  # End fixed at 1.0
        timestep_shift=timestep_shift,
        num_timesteps=num_timesteps,
        cfg_renorm_min=cfg_renorm_min,
        cfg_renorm_type=cfg_renorm_type,
        image_shapes=image_shapes,
    )

    result = {"text": "", "image": None}
    # Call inferencer with or without think parameter based on user choice
    for i in inferencer(text=prompt, think=show_thinking, understanding_output=False, **inference_hyper):
        # print(type(i)) # For debugging stream
        if type(i) == str:
            result["text"] += i
        else:
            result["image"] = i

        yield result["image"], result.get("text", "")


# Image Understanding function with thinking option and hyperparameters
@spaces.GPU(duration=90)
def image_understanding(image: Image.Image, prompt: str, show_thinking=False, 
                        do_sample=False, text_temperature=0.3, max_new_tokens=512):
    if image is None:
        yield "Please upload an image for understanding."
        return

    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    image = pil_img2rgb(image)
    
    # Set hyperparameters
    inference_hyper = dict(
        do_sample=do_sample,
        temperature=text_temperature,
        max_think_token_n=max_new_tokens, # Set max_length for text generation
    )
    
    result_text = ""
    # Use show_thinking parameter to control thinking process
    for i in inferencer(image=image, text=prompt, think=show_thinking, 
                        understanding_output=True, **inference_hyper):
        if type(i) == str:
            result_text += i
            yield result_text
        # else: This branch seems unused in original, as understanding_output=True typically yields text.
        #      If it yielded image, it would be an intermediate. For final output, it's text.
        #      For now, we assume it only yields text.
    yield result_text # Ensure final text is yielded


# Image Editing function with thinking option and hyperparameters
@spaces.GPU(duration=90)
def edit_image(image: Image.Image, prompt: str, show_thinking=False, cfg_text_scale=4.0, 
              cfg_img_scale=2.0, cfg_interval=0.0, 
              timestep_shift=3.0, num_timesteps=50, cfg_renorm_min=1.0, 
              cfg_renorm_type="text_channel", max_think_token_n=1024, 
              do_sample=False, text_temperature=0.3, seed=0):
    # Set seed for reproducibility
    set_seed(seed)
    
    if image is None:
        yield None, "Please upload an image for editing." # Yield tuple for image/text
        return

    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    image = pil_img2rgb(image)
    
    # Set hyperparameters
    inference_hyper = dict(
        max_think_token_n=max_think_token_n if show_thinking else 1024,
        do_sample=do_sample if show_thinking else False,
        temperature=text_temperature if show_thinking else 0.3,
        cfg_text_scale=cfg_text_scale,
        cfg_img_scale=cfg_img_scale,
        cfg_interval=[cfg_interval, 1.0],  # End fixed at 1.0
        timestep_shift=timestep_shift,
        num_timesteps=num_timesteps,
        cfg_renorm_min=cfg_renorm_min,
        cfg_renorm_type=cfg_renorm_type,
    )
    
    # Include thinking parameter based on user choice
    result = {"text": "", "image": None}
    for i in inferencer(image=image, text=prompt, think=show_thinking, understanding_output=False, **inference_hyper):
        if type(i) == str:
            result["text"] += i
        else:
            result["image"] = i

        yield result["image"], result.get("text", "") # Yield tuple for image/text

# Helper function to load example images
def load_example_image(image_path):
    try:
        return Image.open(image_path)
    except Exception as e:
        print(f"Error loading example image: {e}")
        return None

# Gradio UI 
with gr.Blocks() as demo:
    gr.Markdown("""
    <div>
      <img src="https://lf3-static.bytednsdoc.com/obj/eden-cn/nuhojubrps/banner.png" alt="BAGEL" width="380"/>
    </div>
    # BAGEL Multimodal Chatbot
    Interact with BAGEL to generate images from text, edit existing images, or understand image content.
    """)

    # Chatbot display area
    chatbot = gr.Chatbot(label="Chat History", height=500, avatar_images=(None, "https://lf3-static.bytednsdoc.com/obj/eden-cn/nuhojubrps/BAGEL_favicon.png"))

    # Input area
    with gr.Row():
        image_input = gr.Image(type="pil", label="Optional: Upload an Image (for Image Understanding/Edit)", scale=0.5, value=None)
        
        with gr.Column(scale=1.5):
            user_prompt = gr.Textbox(label="Your Message", placeholder="Type your prompt here...", lines=3)
            
            with gr.Row():
                mode_selector = gr.Radio(
                    choices=["Text to Image", "Image Understanding", "Image Edit"],
                    value="Text to Image",
                    label="Select Mode",
                    interactive=True
                )
                submit_btn = gr.Button("Send", variant="primary")
    
    # Global/Shared Hyperparameters
    with gr.Accordion("General Settings & Hyperparameters", open=False) as general_accordion:
        with gr.Row():
            show_thinking_global = gr.Checkbox(label="Show Thinking Process", value=False, info="Enable to see model's intermediate thinking text.")
            seed_global = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, label="Seed", info="0 for random seed, positive for reproducible results.")
        
        # Container for thinking-specific parameters, visibility controlled by show_thinking_global
        thinking_params_container = gr.Group(visible=False)
        with thinking_params_container:
            gr.Markdown("#### Thinking Process Parameters (affect text generation)")
            with gr.Row():
                common_do_sample = gr.Checkbox(label="Enable Sampling", value=False, info="Enable sampling for text generation (otherwise greedy).")
                common_text_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, label="Text Temperature", info="Controls randomness in text generation (higher = more random).")
                common_max_think_token_n = gr.Slider(minimum=64, maximum=4096, value=1024, step=64, label="Max Think Tokens / Max New Tokens", info="Maximum number of tokens for thinking (T2I/Edit) or generated text (Understanding).")
    
    # T2I Hyperparameters
    t2i_params_accordion = gr.Accordion("Text to Image Specific Parameters", open=False)
    with t2i_params_accordion:
        gr.Markdown("#### Text to Image Parameters")
        with gr.Row():
            t2i_image_ratio = gr.Dropdown(choices=["1:1", "4:3", "3:4", "16:9", "9:16"], value="1:1", label="Image Ratio", info="The longer size is fixed to 1024 pixels.")
        with gr.Row():
            t2i_cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, label="CFG Text Scale", info="Controls how strongly the model follows the text prompt (4.0-8.0 recommended).")
            t2i_cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.1, label="CFG Interval", info="Start of Classifier-Free Guidance application interval (end is fixed at 1.0).")
        with gr.Row():
            t2i_cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"], value="global", label="CFG Renorm Type", info="Normalization type for CFG. Use 'global' if the generated image is blurry.")
            t2i_cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, label="CFG Renorm Min", info="Minimum value for CFG Renormalization (1.0 disables CFG-Renorm).")
        with gr.Row():
            t2i_num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, label="Timesteps", info="Total denoising steps for image generation.")
            t2i_timestep_shift = gr.Slider(minimum=1.0, maximum=5.0, value=3.0, step=0.5, label="Timestep Shift", info="Higher values for layout control, lower for fine details.")

    # Image Edit Hyperparameters
    edit_params_accordion = gr.Accordion("Image Edit Specific Parameters", open=False)
    with edit_params_accordion:
        gr.Markdown("#### Image Edit Parameters")
        with gr.Row():
            edit_cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, label="CFG Text Scale", info="Controls how strongly the model follows the text prompt for editing.")
            edit_cfg_img_scale = gr.Slider(minimum=1.0, maximum=4.0, value=2.0, step=0.1, label="CFG Image Scale", info="Controls how much the model preserves input image details during editing.")
        with gr.Row():
            edit_cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, label="CFG Interval", info="Start of CFG application interval for editing (end is fixed at 1.0).")
            edit_cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"], value="text_channel", label="CFG Renorm Type", info="Normalization type for CFG during editing. Use 'global' if output is blurry.")
        with gr.Row():
            edit_cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, label="CFG Renorm Min", info="Minimum value for CFG Renormalization during editing (1.0 disables CFG-Renorm).")
        with gr.Row():
            edit_num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, label="Timesteps", info="Total denoising steps for image editing.")
            edit_timestep_shift = gr.Slider(minimum=1.0, maximum=10.0, value=3.0, step=0.5, label="Timestep Shift", info="Higher values for layout control, lower for fine details during editing.")

    # Main chat processing function
    @spaces.GPU(duration=90) # Apply GPU decorator to the combined function
    def process_chat_message(history, prompt, uploaded_image, mode, 
                             show_thinking_global_val, seed_global_val, 
                             common_do_sample_val, common_text_temperature_val, common_max_think_token_n_val,
                             t2i_cfg_text_scale_val, t2i_cfg_interval_val, t2i_timestep_shift_val, 
                             t2i_num_timesteps_val, t2i_cfg_renorm_min_val, t2i_cfg_renorm_type_val,
                             t2i_image_ratio_val,
                             edit_cfg_text_scale_val, edit_cfg_img_scale_val, edit_cfg_interval_val, 
                             edit_timestep_shift_val, edit_num_timesteps_val, edit_cfg_renorm_min_val, 
                             edit_cfg_renorm_type_val):

        # Append user message to history
        history.append([prompt, None])
        
        # Define common parameters for inference functions
        common_infer_params = dict(
            show_thinking=show_thinking_global_val,
            do_sample=common_do_sample_val,
            text_temperature=common_text_temperature_val,
        )

        try:
            if mode == "Text to Image":
                # Add T2I specific parameters, including max_think_token_n and seed
                t2i_params = {
                    **common_infer_params,
                    "max_think_token_n": common_max_think_token_n_val,
                    "seed": seed_global_val,
                    "cfg_text_scale": t2i_cfg_text_scale_val,
                    "cfg_interval": t2i_cfg_interval_val,
                    "timestep_shift": t2i_timestep_shift_val,
                    "num_timesteps": t2i_num_timesteps_val,
                    "cfg_renorm_min": t2i_cfg_renorm_min_val,
                    "cfg_renorm_type": t2i_cfg_renorm_type_val,
                    "image_ratio": t2i_image_ratio_val,
                }
                
                for img, txt in text_to_image(
                    prompt=prompt,
                    **t2i_params
                ):
                    # For Text to Image, yield image first, then thinking text (if available)
                    if img is not None:
                        history[-1] = [prompt, (img, txt)]
                    elif txt: # Only update text if image is not ready yet
                        history[-1] = [prompt, txt]
                    yield history, gr.update(value="") # Update chatbot and clear input

            elif mode == "Image Understanding":
                if uploaded_image is None:
                    history[-1] = [prompt, "Please upload an image for Image Understanding."]
                    yield history, gr.update(value="")
                    return
                
                # Add Understanding specific parameters (max_new_tokens maps to common_max_think_token_n)
                # Note: seed is not used in image_understanding
                understand_params = {
                    **common_infer_params,
                    "max_new_tokens": common_max_think_token_n_val,
                }
                # Remove seed from parameters as it's not used by image_understanding
                understand_params.pop('seed', None)
                
                for txt in image_understanding(
                    image=uploaded_image,
                    prompt=prompt,
                    **understand_params
                ):
                    history[-1] = [prompt, txt]
                    yield history, gr.update(value="")
                    
            elif mode == "Image Edit":
                if uploaded_image is None:
                    history[-1] = [prompt, "Please upload an image for Image Editing."]
                    yield history, gr.update(value="")
                    return
                
                # Add Edit specific parameters, including max_think_token_n and seed
                edit_params = {
                    **common_infer_params,
                    "max_think_token_n": common_max_think_token_n_val,
                    "seed": seed_global_val,
                    "cfg_text_scale": edit_cfg_text_scale_val,
                    "cfg_img_scale": edit_cfg_img_scale_val,
                    "cfg_interval": edit_cfg_interval_val,
                    "timestep_shift": edit_timestep_shift_val,
                    "num_timesteps": edit_num_timesteps_val,
                    "cfg_renorm_min": edit_cfg_renorm_min_val,
                    "cfg_renorm_type": edit_cfg_renorm_type_val,
                }

                for img, txt in edit_image(
                    image=uploaded_image,
                    prompt=prompt,
                    **edit_params
                ):
                    # For Image Edit, yield image first, then thinking text (if available)
                    if img is not None:
                        history[-1] = [prompt, (img, txt)]
                    elif txt: # Only update text if image is not ready yet
                        history[-1] = [prompt, txt]
                    yield history, gr.update(value="")

        except Exception as e:
            history[-1] = [prompt, f"An error occurred: {e}"]
            yield history, gr.update(value="") # Update history with error and clear input

    # Event handlers for dynamic UI updates and submission
    # Control visibility of thinking parameters
    show_thinking_global.change(
        fn=lambda x: gr.update(visible=x),
        inputs=[show_thinking_global],
        outputs=[thinking_params_container]
    )

    # Clear image input if mode switches to Text to Image
    mode_selector.change(
        fn=lambda mode: gr.update(value=None) if mode == "Text to Image" else gr.update(),
        inputs=[mode_selector],
        outputs=[image_input]
    )

    # List of all input components whose values are passed to process_chat_message
    inputs_list = [
        chatbot, user_prompt, image_input, mode_selector,
        show_thinking_global, seed_global,
        common_do_sample, common_text_temperature, common_max_think_token_n,
        t2i_cfg_text_scale, t2i_cfg_interval, t2i_timestep_shift, 
        t2i_num_timesteps, t2i_cfg_renorm_min, t2i_cfg_renorm_type,
        t2i_image_ratio,
        edit_cfg_text_scale, edit_cfg_img_scale, edit_cfg_interval, 
        edit_timestep_shift, edit_num_timesteps, edit_cfg_renorm_min, 
        edit_cfg_renorm_type
    ]
    
    # Link submit button and text input 'Enter' key to the processing function
    submit_btn.click(
        fn=process_chat_message,
        inputs=inputs_list,
        outputs=[chatbot, user_prompt],
        scroll_to_output=True,
        queue=False, # Set to True if long generation times cause issues, but might affect responsiveness
    )
    user_prompt.submit( # Allows pressing Enter in textbox to submit
        fn=process_chat_message,
        inputs=inputs_list,
        outputs=[chatbot, user_prompt],
        scroll_to_output=True,
        queue=False,
    )

demo.launch()