Bagel-7B-Demo / app.py
KingNish's picture
by gemini
397bb2f verified
raw
history blame
22.1 kB
import spaces
import gradio as gr
import numpy as np
import os
import torch
import random
import subprocess
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
from accelerate import infer_auto_device_map, load_checkpoint_and_dispatch, init_empty_weights
from PIL import Image
from data.data_utils import add_special_tokens, pil_img2rgb
from data.transforms import ImageTransform
from inferencer import InterleaveInferencer
from modeling.autoencoder import load_ae
from modeling.bagel.qwen2_navit import NaiveCache
from modeling.bagel import (
BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM,
SiglipVisionConfig, SiglipVisionModel
)
from modeling.qwen2 import Qwen2Tokenizer
from huggingface_hub import snapshot_download
save_dir = "./model"
repo_id = "ByteDance-Seed/BAGEL-7B-MoT"
cache_dir = save_dir + "/cache"
snapshot_download(cache_dir=cache_dir,
local_dir=save_dir,
repo_id=repo_id,
local_dir_use_symlinks=False,
resume_download=True,
allow_patterns=["*.json", "*.safetensors", "*.bin", "*.py", "*.md", "*.txt"],
)
# Model Initialization
model_path = "./model" #Download from https://huggingface.co/ByteDance-Seed/BAGEL-7B-MoT
llm_config = Qwen2Config.from_json_file(os.path.join(model_path, "llm_config.json"))
llm_config.qk_norm = True
llm_config.tie_word_embeddings = False
llm_config.layer_module = "Qwen2MoTDecoderLayer"
vit_config = SiglipVisionConfig.from_json_file(os.path.join(model_path, "vit_config.json"))
vit_config.rope = False
vit_config.num_hidden_layers -= 1
vae_model, vae_config = load_ae(local_path=os.path.join(model_path, "ae.safetensors"))
config = BagelConfig(
visual_gen=True,
visual_und=True,
llm_config=llm_config,
vit_config=vit_config,
vae_config=vae_config,
vit_max_num_patch_per_side=70,
connector_act='gelu_pytorch_tanh',
latent_patch_size=2,
max_latent_size=64,
)
with init_empty_weights():
language_model = Qwen2ForCausalLM(llm_config)
vit_model = SiglipVisionModel(vit_config)
model = Bagel(language_model, vit_model, config)
model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config, meta=True)
tokenizer = Qwen2Tokenizer.from_pretrained(model_path)
tokenizer, new_token_ids, _ = add_special_tokens(tokenizer)
vae_transform = ImageTransform(1024, 512, 16)
vit_transform = ImageTransform(980, 224, 14)
# Model Loading and Multi GPU Infernece Preparing
device_map = infer_auto_device_map(
model,
max_memory={i: "80GiB" for i in range(torch.cuda.device_count())},
no_split_module_classes=["Bagel", "Qwen2MoTDecoderLayer"],
)
same_device_modules = [
'language_model.model.embed_tokens',
'time_embedder',
'latent_pos_embed',
'vae2llm',
'llm2vae',
'connector',
'vit_pos_embed'
]
if torch.cuda.device_count() == 1:
first_device = device_map.get(same_device_modules[0], "cuda:0")
for k in same_device_modules:
if k in device_map:
device_map[k] = first_device
else:
device_map[k] = "cuda:0"
else:
first_device = device_map.get(same_device_modules[0])
for k in same_device_modules:
if k in device_map:
device_map[k] = first_device
model = load_checkpoint_and_dispatch(
model,
checkpoint=os.path.join(model_path, "ema.safetensors"),
device_map=device_map,
offload_buffers=True,
dtype=torch.bfloat16,
force_hooks=True,
).eval()
# Inferencer Preparing
inferencer = InterleaveInferencer(
model=model,
vae_model=vae_model,
tokenizer=tokenizer,
vae_transform=vae_transform,
vit_transform=vit_transform,
new_token_ids=new_token_ids,
)
def set_seed(seed):
"""Set random seeds for reproducibility"""
if seed > 0:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
return seed
# Text to Image function with thinking option and hyperparameters
@spaces.GPU(duration=90)
def text_to_image(prompt, show_thinking=False, cfg_text_scale=4.0, cfg_interval=0.4,
timestep_shift=3.0, num_timesteps=50,
cfg_renorm_min=1.0, cfg_renorm_type="global",
max_think_token_n=1024, do_sample=False, text_temperature=0.3,
seed=0, image_ratio="1:1"):
# Set seed for reproducibility
set_seed(seed)
if image_ratio == "1:1":
image_shapes = (1024, 1024)
elif image_ratio == "4:3":
image_shapes = (768, 1024)
elif image_ratio == "3:4":
image_shapes = (1024, 768)
elif image_ratio == "16:9":
image_shapes = (576, 1024)
elif image_ratio == "9:16":
image_shapes = (1024, 576)
# Set hyperparameters
inference_hyper = dict(
max_think_token_n=max_think_token_n if show_thinking else 1024,
do_sample=do_sample if show_thinking else False,
temperature=text_temperature if show_thinking else 0.3,
cfg_text_scale=cfg_text_scale,
cfg_interval=[cfg_interval, 1.0], # End fixed at 1.0
timestep_shift=timestep_shift,
num_timesteps=num_timesteps,
cfg_renorm_min=cfg_renorm_min,
cfg_renorm_type=cfg_renorm_type,
image_shapes=image_shapes,
)
result = {"text": "", "image": None}
# Call inferencer with or without think parameter based on user choice
for i in inferencer(text=prompt, think=show_thinking, understanding_output=False, **inference_hyper):
# print(type(i)) # For debugging stream
if type(i) == str:
result["text"] += i
else:
result["image"] = i
yield result["image"], result.get("text", "")
# Image Understanding function with thinking option and hyperparameters
@spaces.GPU(duration=90)
def image_understanding(image: Image.Image, prompt: str, show_thinking=False,
do_sample=False, text_temperature=0.3, max_new_tokens=512):
if image is None:
yield "Please upload an image for understanding."
return
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
image = pil_img2rgb(image)
# Set hyperparameters
inference_hyper = dict(
do_sample=do_sample,
temperature=text_temperature,
max_think_token_n=max_new_tokens, # Set max_length for text generation
)
result_text = ""
# Use show_thinking parameter to control thinking process
for i in inferencer(image=image, text=prompt, think=show_thinking,
understanding_output=True, **inference_hyper):
if type(i) == str:
result_text += i
yield result_text
# else: This branch seems unused in original, as understanding_output=True typically yields text.
# If it yielded image, it would be an intermediate. For final output, it's text.
# For now, we assume it only yields text.
yield result_text # Ensure final text is yielded
# Image Editing function with thinking option and hyperparameters
@spaces.GPU(duration=90)
def edit_image(image: Image.Image, prompt: str, show_thinking=False, cfg_text_scale=4.0,
cfg_img_scale=2.0, cfg_interval=0.0,
timestep_shift=3.0, num_timesteps=50, cfg_renorm_min=1.0,
cfg_renorm_type="text_channel", max_think_token_n=1024,
do_sample=False, text_temperature=0.3, seed=0):
# Set seed for reproducibility
set_seed(seed)
if image is None:
yield None, "Please upload an image for editing." # Yield tuple for image/text
return
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
image = pil_img2rgb(image)
# Set hyperparameters
inference_hyper = dict(
max_think_token_n=max_think_token_n if show_thinking else 1024,
do_sample=do_sample if show_thinking else False,
temperature=text_temperature if show_thinking else 0.3,
cfg_text_scale=cfg_text_scale,
cfg_img_scale=cfg_img_scale,
cfg_interval=[cfg_interval, 1.0], # End fixed at 1.0
timestep_shift=timestep_shift,
num_timesteps=num_timesteps,
cfg_renorm_min=cfg_renorm_min,
cfg_renorm_type=cfg_renorm_type,
)
# Include thinking parameter based on user choice
result = {"text": "", "image": None}
for i in inferencer(image=image, text=prompt, think=show_thinking, understanding_output=False, **inference_hyper):
if type(i) == str:
result["text"] += i
else:
result["image"] = i
yield result["image"], result.get("text", "") # Yield tuple for image/text
# Helper function to load example images
def load_example_image(image_path):
try:
return Image.open(image_path)
except Exception as e:
print(f"Error loading example image: {e}")
return None
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("""
<div>
<img src="https://lf3-static.bytednsdoc.com/obj/eden-cn/nuhojubrps/banner.png" alt="BAGEL" width="380"/>
</div>
# BAGEL Multimodal Chatbot
Interact with BAGEL to generate images from text, edit existing images, or understand image content.
""")
# Chatbot display area
chatbot = gr.Chatbot(label="Chat History", height=500, avatar_images=(None, "https://lf3-static.bytednsdoc.com/obj/eden-cn/nuhojubrps/BAGEL_favicon.png"))
# Input area
with gr.Row():
image_input = gr.Image(type="pil", label="Optional: Upload an Image (for Image Understanding/Edit)", scale=0.5, value=None)
with gr.Column(scale=1.5):
user_prompt = gr.Textbox(label="Your Message", placeholder="Type your prompt here...", lines=3)
with gr.Row():
mode_selector = gr.Radio(
choices=["Text to Image", "Image Understanding", "Image Edit"],
value="Text to Image",
label="Select Mode",
interactive=True
)
submit_btn = gr.Button("Send", variant="primary")
# Global/Shared Hyperparameters
with gr.Accordion("General Settings & Hyperparameters", open=False) as general_accordion:
with gr.Row():
show_thinking_global = gr.Checkbox(label="Show Thinking Process", value=False, info="Enable to see model's intermediate thinking text.")
seed_global = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, label="Seed", info="0 for random seed, positive for reproducible results.")
# Container for thinking-specific parameters, visibility controlled by show_thinking_global
thinking_params_container = gr.Group(visible=False)
with thinking_params_container:
gr.Markdown("#### Thinking Process Parameters (affect text generation)")
with gr.Row():
common_do_sample = gr.Checkbox(label="Enable Sampling", value=False, info="Enable sampling for text generation (otherwise greedy).")
common_text_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, label="Text Temperature", info="Controls randomness in text generation (higher = more random).")
common_max_think_token_n = gr.Slider(minimum=64, maximum=4096, value=1024, step=64, label="Max Think Tokens / Max New Tokens", info="Maximum number of tokens for thinking (T2I/Edit) or generated text (Understanding).")
# T2I Hyperparameters
t2i_params_accordion = gr.Accordion("Text to Image Specific Parameters", open=False)
with t2i_params_accordion:
gr.Markdown("#### Text to Image Parameters")
with gr.Row():
t2i_image_ratio = gr.Dropdown(choices=["1:1", "4:3", "3:4", "16:9", "9:16"], value="1:1", label="Image Ratio", info="The longer size is fixed to 1024 pixels.")
with gr.Row():
t2i_cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, label="CFG Text Scale", info="Controls how strongly the model follows the text prompt (4.0-8.0 recommended).")
t2i_cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.1, label="CFG Interval", info="Start of Classifier-Free Guidance application interval (end is fixed at 1.0).")
with gr.Row():
t2i_cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"], value="global", label="CFG Renorm Type", info="Normalization type for CFG. Use 'global' if the generated image is blurry.")
t2i_cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, label="CFG Renorm Min", info="Minimum value for CFG Renormalization (1.0 disables CFG-Renorm).")
with gr.Row():
t2i_num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, label="Timesteps", info="Total denoising steps for image generation.")
t2i_timestep_shift = gr.Slider(minimum=1.0, maximum=5.0, value=3.0, step=0.5, label="Timestep Shift", info="Higher values for layout control, lower for fine details.")
# Image Edit Hyperparameters
edit_params_accordion = gr.Accordion("Image Edit Specific Parameters", open=False)
with edit_params_accordion:
gr.Markdown("#### Image Edit Parameters")
with gr.Row():
edit_cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, label="CFG Text Scale", info="Controls how strongly the model follows the text prompt for editing.")
edit_cfg_img_scale = gr.Slider(minimum=1.0, maximum=4.0, value=2.0, step=0.1, label="CFG Image Scale", info="Controls how much the model preserves input image details during editing.")
with gr.Row():
edit_cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, label="CFG Interval", info="Start of CFG application interval for editing (end is fixed at 1.0).")
edit_cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"], value="text_channel", label="CFG Renorm Type", info="Normalization type for CFG during editing. Use 'global' if output is blurry.")
with gr.Row():
edit_cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, label="CFG Renorm Min", info="Minimum value for CFG Renormalization during editing (1.0 disables CFG-Renorm).")
with gr.Row():
edit_num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, label="Timesteps", info="Total denoising steps for image editing.")
edit_timestep_shift = gr.Slider(minimum=1.0, maximum=10.0, value=3.0, step=0.5, label="Timestep Shift", info="Higher values for layout control, lower for fine details during editing.")
# Main chat processing function
@spaces.GPU(duration=90) # Apply GPU decorator to the combined function
def process_chat_message(history, prompt, uploaded_image, mode,
show_thinking_global_val, seed_global_val,
common_do_sample_val, common_text_temperature_val, common_max_think_token_n_val,
t2i_cfg_text_scale_val, t2i_cfg_interval_val, t2i_timestep_shift_val,
t2i_num_timesteps_val, t2i_cfg_renorm_min_val, t2i_cfg_renorm_type_val,
t2i_image_ratio_val,
edit_cfg_text_scale_val, edit_cfg_img_scale_val, edit_cfg_interval_val,
edit_timestep_shift_val, edit_num_timesteps_val, edit_cfg_renorm_min_val,
edit_cfg_renorm_type_val):
# Append user message to history
history.append([prompt, None])
# Define common parameters for inference functions
common_infer_params = dict(
show_thinking=show_thinking_global_val,
do_sample=common_do_sample_val,
text_temperature=common_text_temperature_val,
)
try:
if mode == "Text to Image":
# Add T2I specific parameters, including max_think_token_n and seed
t2i_params = {
**common_infer_params,
"max_think_token_n": common_max_think_token_n_val,
"seed": seed_global_val,
"cfg_text_scale": t2i_cfg_text_scale_val,
"cfg_interval": t2i_cfg_interval_val,
"timestep_shift": t2i_timestep_shift_val,
"num_timesteps": t2i_num_timesteps_val,
"cfg_renorm_min": t2i_cfg_renorm_min_val,
"cfg_renorm_type": t2i_cfg_renorm_type_val,
"image_ratio": t2i_image_ratio_val,
}
for img, txt in text_to_image(
prompt=prompt,
**t2i_params
):
# For Text to Image, yield image first, then thinking text (if available)
if img is not None:
history[-1] = [prompt, (img, txt)]
elif txt: # Only update text if image is not ready yet
history[-1] = [prompt, txt]
yield history, gr.update(value="") # Update chatbot and clear input
elif mode == "Image Understanding":
if uploaded_image is None:
history[-1] = [prompt, "Please upload an image for Image Understanding."]
yield history, gr.update(value="")
return
# Add Understanding specific parameters (max_new_tokens maps to common_max_think_token_n)
# Note: seed is not used in image_understanding
understand_params = {
**common_infer_params,
"max_new_tokens": common_max_think_token_n_val,
}
# Remove seed from parameters as it's not used by image_understanding
understand_params.pop('seed', None)
for txt in image_understanding(
image=uploaded_image,
prompt=prompt,
**understand_params
):
history[-1] = [prompt, txt]
yield history, gr.update(value="")
elif mode == "Image Edit":
if uploaded_image is None:
history[-1] = [prompt, "Please upload an image for Image Editing."]
yield history, gr.update(value="")
return
# Add Edit specific parameters, including max_think_token_n and seed
edit_params = {
**common_infer_params,
"max_think_token_n": common_max_think_token_n_val,
"seed": seed_global_val,
"cfg_text_scale": edit_cfg_text_scale_val,
"cfg_img_scale": edit_cfg_img_scale_val,
"cfg_interval": edit_cfg_interval_val,
"timestep_shift": edit_timestep_shift_val,
"num_timesteps": edit_num_timesteps_val,
"cfg_renorm_min": edit_cfg_renorm_min_val,
"cfg_renorm_type": edit_cfg_renorm_type_val,
}
for img, txt in edit_image(
image=uploaded_image,
prompt=prompt,
**edit_params
):
# For Image Edit, yield image first, then thinking text (if available)
if img is not None:
history[-1] = [prompt, (img, txt)]
elif txt: # Only update text if image is not ready yet
history[-1] = [prompt, txt]
yield history, gr.update(value="")
except Exception as e:
history[-1] = [prompt, f"An error occurred: {e}"]
yield history, gr.update(value="") # Update history with error and clear input
# Event handlers for dynamic UI updates and submission
# Control visibility of thinking parameters
show_thinking_global.change(
fn=lambda x: gr.update(visible=x),
inputs=[show_thinking_global],
outputs=[thinking_params_container]
)
# Clear image input if mode switches to Text to Image
mode_selector.change(
fn=lambda mode: gr.update(value=None) if mode == "Text to Image" else gr.update(),
inputs=[mode_selector],
outputs=[image_input]
)
# List of all input components whose values are passed to process_chat_message
inputs_list = [
chatbot, user_prompt, image_input, mode_selector,
show_thinking_global, seed_global,
common_do_sample, common_text_temperature, common_max_think_token_n,
t2i_cfg_text_scale, t2i_cfg_interval, t2i_timestep_shift,
t2i_num_timesteps, t2i_cfg_renorm_min, t2i_cfg_renorm_type,
t2i_image_ratio,
edit_cfg_text_scale, edit_cfg_img_scale, edit_cfg_interval,
edit_timestep_shift, edit_num_timesteps, edit_cfg_renorm_min,
edit_cfg_renorm_type
]
# Link submit button and text input 'Enter' key to the processing function
submit_btn.click(
fn=process_chat_message,
inputs=inputs_list,
outputs=[chatbot, user_prompt],
scroll_to_output=True,
queue=False, # Set to True if long generation times cause issues, but might affect responsiveness
)
user_prompt.submit( # Allows pressing Enter in textbox to submit
fn=process_chat_message,
inputs=inputs_list,
outputs=[chatbot, user_prompt],
scroll_to_output=True,
queue=False,
)
demo.launch()