LPX55's picture
Update sam2_mask.py
014dfe3 verified
raw
history blame
8.47 kB
import spaces
import gradio as gr
import os
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1"
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
from PIL import Image, ImageFilter
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
from gradio_image_prompter import ImagePrompter
def preprocess_image(image):
return image, gr.State([]), gr.State([]), image
def get_point(point_type, tracking_points, trackings_input_label, first_frame_path, evt: gr.SelectData):
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
tracking_points.append(evt.index)
print(f"TRACKING POINTS: {tracking_points}")
if point_type == "include":
trackings_input_label.append(1)
elif point_type == "exclude":
trackings_input_label.append(0)
print(f"TRACKING INPUT LABELS: {trackings_input_label}")
# Open the image and get its dimensions
transparent_background = Image.open(first_frame_path).convert('RGBA')
w, h = transparent_background.size
# Define the circle radius as a fraction of the smaller dimension
fraction = 0.02 # You can adjust this value as needed
radius = int(fraction * min(w, h))
# Create a transparent layer to draw on
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
for index, track in enumerate(tracking_points):
if trackings_input_label[index] == 1:
cv2.circle(transparent_layer, tuple(track), radius, (0, 255, 0, 255), -1)
else:
cv2.circle(transparent_layer, tuple(track), radius, (255, 0, 0, 255), -1)
# Convert the transparent layer back to an image
transparent_layer = Image.fromarray(transparent_layer, 'RGBA')
selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
return tracking_points, trackings_input_label, selected_point_map
# use bfloat16 for the entire notebook
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
def show_mask(mask, ax, random_color=False, borders=True):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask = mask.astype(np.uint8)
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
if borders:
import cv2
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
# Try to smooth contours
contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels == 1]
neg_points = coords[labels == 0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True):
combined_images = [] # List to store filenames of images with masks overlaid
mask_images = [] # List to store filenames of separate mask images
for i, (mask, score) in enumerate(zip(masks, scores)):
# ---- Original Image with Mask Overlaid ----
plt.figure(figsize=(10, 10))
plt.imshow(image)
show_mask(mask, plt.gca(), borders=borders) # Draw the mask with borders
if box_coords is not None:
show_box(box_coords, plt.gca())
if len(scores) > 1:
plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
plt.axis('off')
# Save the figure as a JPG file
combined_filename = f"combined_image_{i+1}.jpg"
plt.savefig(combined_filename, format='jpg', bbox_inches='tight')
combined_images.append(combined_filename)
plt.close() # Close the figure to free up memory
# ---- Separate Mask Image (White Mask on Black Background) ----
# Create a black image
mask_image = np.zeros_like(image, dtype=np.uint8)
# The mask is a binary array where the masked area is 1, else 0.
# Convert the mask to a white color in the mask_image
mask_layer = (mask > 0).astype(np.uint8) * 255
for c in range(3): # Assuming RGB, repeat mask for all channels
mask_image[:, :, c] = mask_layer
# Save the mask image
mask_filename = f"mask_image_{i+1}.png"
Image.fromarray(mask_image).save(mask_filename)
mask_images.append(mask_filename)
plt.close() # Close the figure to free up memory
return combined_images, mask_images
@spaces.GPU()
def sam_process(original_image, points, labels):
print(f"Points: {points}")
print(f"Labels: {labels}")
image = Image.open(original_image)
image = np.array(image.convert("RGB"))
if not points or not labels:
print("No points or labels provided, returning None")
return None
# Convert image to numpy array for SAM2 processing
# image = np.array(original_image)
predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2.1-hiera-large")
predictor.set_image(image)
input_point = np.array(points.value)
input_label = np.array(labels.value)
print(predictor._features["image_embed"].shape, predictor._features["image_embed"][-1].shape)
masks, scores, logits = predictor.predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=False,
)
sorted_indices = np.argsort(scores)[::-1]
masks = masks[sorted_indices]
scores = scores[sorted_indices]
logits = logits[sorted_indices]
print(masks.shape)
results, mask_results = show_masks(image, masks, scores, point_coords=input_point, input_labels=input_label, borders=True)
print(results)
return results[0], mask_results[0]
def create_sam2_tab():
first_frame = gr.State() # Tracks original image
tracking_points = gr.State([])
trackings_input_label = gr.State([])
with gr.Column():
with gr.Row():
with gr.Column():
sam_input_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False)
points_map = gr.Image(
label="points map",
type="filepath",
interactive=True
)
with gr.Row():
point_type = gr.Radio(["include", "exclude"], value="include", label="Point Type")
clear_button = gr.Button("Clear Points")
submit_button = gr.Button("Submit")
with gr.Column():
output_image = gr.Image("Segmented Output")
output_result_mask = gr.Image()
# Event handlers
points_map.upload(
fn = preprocess_image,
inputs = [points_map],
# outputs=[sam_input_image, first_frame, tracking_points, trackings_input_label],
outputs = [first_frame, tracking_points, trackings_input_label, sam_input_image],
queue=False
)
clear_button.click(
lambda img: ([], [], img),
inputs=first_frame,
outputs=[tracking_points, trackings_input_label, points_map],
queue=False
)
points_map.select(
get_point,
inputs=[point_type, tracking_points, trackings_input_label, first_frame],
outputs=[tracking_points, trackings_input_label, points_map],
queue = False
)
submit_button.click(
sam_process,
inputs=[sam_input_image, tracking_points, trackings_input_label],
outputs = [output_image, output_result_mask]
)
return sam_input_image, points_map, output_image