Spaces:
Runtime error
Runtime error
File size: 5,998 Bytes
835936b 89373ab 835936b 003104b 835936b 89373ab 835936b 89373ab 835936b 89373ab 835936b 1204ffb 835936b 89373ab c45ce5d 835936b 89373ab c45ce5d 835936b 89373ab c45ce5d 835936b 89373ab c45ce5d 835936b c45ce5d 835936b 1204ffb 89373ab 1204ffb 89373ab 835936b 1204ffb 89373ab 1204ffb 89373ab 835936b 89373ab 1204ffb 89373ab 1204ffb 89373ab 835936b 1204ffb 89373ab 1204ffb 89373ab 1204ffb 89373ab 695f802 89373ab 1204ffb 89373ab 1204ffb 89373ab 695f802 89373ab 695f802 89373ab 835936b 89373ab 835936b 1204ffb 89373ab 695f802 89373ab 835936b 89373ab 835936b 89373ab 835936b 89373ab 835936b 89373ab 835936b 89373ab 835936b 89373ab 835936b 89373ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import os
import json
from dotenv import load_dotenv
from langchain_core.messages import HumanMessage
load_dotenv()
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN")
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import Chroma
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.schema import Document
# ---- Tool Definitions (with docstrings) ----
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers and return the result."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers and return the result."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract second integer from the first and return the result."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide first integer by second and return the result as a float."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Return the remainder when first integer is divided by second."""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for the query and return text of up to 2 documents."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted = "\n\n---\n\n".join(
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
)
return {"wiki_results": formatted}
@tool
def web_search(query: str) -> str:
"""Search the web for the query using Tavily and return up to 3 results."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted = "\n\n---\n\n".join(
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
)
return {"web_results": formatted}
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for the query and return content from up to 3 papers."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted = "\n\n---\n\n".join(
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
)
return {"arvix_results": formatted}
# Build vector store once
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
json_QA = [json.loads(line) for line in open("metadata.jsonl", "r")]
documents = [
Document(
page_content=f"Question : {sample['Question']}\n\nFinal answer : {sample['Final answer']}",
metadata={"source": sample["task_id"]}
) for sample in json_QA
]
vector_store = Chroma.from_documents(
documents=documents,
embedding=embeddings,
persist_directory="./chroma_db",
collection_name="my_collection"
)
print("Documents inserted:", vector_store._collection.count())
@tool
def similar_question_search(query: str) -> str:
"""Search for questions similar to the input query using the vector store."""
matched_docs = vector_store.similarity_search(query, 3)
formatted = "\n\n---\n\n".join(
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in matched_docs
)
return {"similar_questions": formatted}
# ---- System Prompt ----
system_prompt = """
You are a helpful assistant tasked with answering questions using a set of tools.
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
FINAL ANSWER: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings...
"""
sys_msg = SystemMessage(content=system_prompt)
tools = [
multiply, add, subtract, divide, modulus,
wiki_search, web_search, arvix_search, similar_question_search
]
# ---- Graph Builder ----
def build_graph(provider: str = "huggingface"):
if provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
repo_id="mosaicml/mpt-30b",
temperature=0,
huggingfacehub_api_token=hf_token
)
)
elif provider == "google":
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
else:
raise ValueError("Invalid provider: choose 'huggingface' or 'google'.")
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
return {"messages": [llm_with_tools.invoke(state["messages"])]}
def retriever(state: MessagesState):
similar = vector_store.similarity_search(state["messages"][0].content)
if similar:
example_msg = HumanMessage(content=f"Here is a similar question:\n\n{similar[0].page_content}")
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
return {"messages": [sys_msg] + state["messages"]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
return builder.compile()
|