File size: 5,998 Bytes
835936b
89373ab
835936b
003104b
835936b
 
 
 
 
 
 
89373ab
 
835936b
 
89373ab
 
835936b
89373ab
835936b
1204ffb
835936b
 
89373ab
c45ce5d
835936b
 
 
89373ab
c45ce5d
835936b
 
 
89373ab
c45ce5d
835936b
 
 
89373ab
c45ce5d
835936b
 
 
 
 
 
c45ce5d
835936b
 
 
 
1204ffb
89373ab
 
1204ffb
 
89373ab
 
835936b
 
 
1204ffb
89373ab
 
1204ffb
 
89373ab
 
835936b
 
89373ab
1204ffb
89373ab
 
1204ffb
 
89373ab
 
835936b
1204ffb
89373ab
1204ffb
89373ab
 
 
 
1204ffb
89373ab
 
 
 
 
 
 
 
695f802
89373ab
 
1204ffb
89373ab
 
1204ffb
 
89373ab
 
695f802
89373ab
695f802
89373ab
 
 
 
 
835936b
 
 
 
89373ab
 
835936b
 
1204ffb
89373ab
695f802
 
89373ab
 
 
 
 
 
 
 
 
835936b
89373ab
835936b
89373ab
835936b
 
89373ab
835936b
 
89373ab
 
 
 
 
835936b
 
 
 
89373ab
835936b
 
89373ab
 
835936b
89373ab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os
import json
from dotenv import load_dotenv
from langchain_core.messages import HumanMessage

load_dotenv()
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN")

from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import Chroma
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.schema import Document

# ---- Tool Definitions (with docstrings) ----

@tool
def multiply(a: int, b: int) -> int:
    """Multiply two integers and return the result."""
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two integers and return the result."""
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract second integer from the first and return the result."""
    return a - b

@tool
def divide(a: int, b: int) -> float:
    """Divide first integer by second and return the result as a float."""
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Return the remainder when first integer is divided by second."""
    return a % b

@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for the query and return text of up to 2 documents."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted = "\n\n---\n\n".join(
        f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
        for doc in search_docs
    )
    return {"wiki_results": formatted}

@tool
def web_search(query: str) -> str:
    """Search the web for the query using Tavily and return up to 3 results."""
    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    formatted = "\n\n---\n\n".join(
        f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
        for doc in search_docs
    )
    return {"web_results": formatted}

@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for the query and return content from up to 3 papers."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted = "\n\n---\n\n".join(
        f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
        for doc in search_docs
    )
    return {"arvix_results": formatted}

# Build vector store once
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
json_QA = [json.loads(line) for line in open("metadata.jsonl", "r")]
documents = [
    Document(
        page_content=f"Question : {sample['Question']}\n\nFinal answer : {sample['Final answer']}",
        metadata={"source": sample["task_id"]}
    ) for sample in json_QA
]
vector_store = Chroma.from_documents(
    documents=documents,
    embedding=embeddings,
    persist_directory="./chroma_db",
    collection_name="my_collection"
)
print("Documents inserted:", vector_store._collection.count())

@tool
def similar_question_search(query: str) -> str:
    """Search for questions similar to the input query using the vector store."""
    matched_docs = vector_store.similarity_search(query, 3)
    formatted = "\n\n---\n\n".join(
        f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
        for doc in matched_docs
    )
    return {"similar_questions": formatted}

# ---- System Prompt ----

system_prompt = """
You are a helpful assistant tasked with answering questions using a set of tools. 
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: 
FINAL ANSWER: [YOUR FINAL ANSWER]. 
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings...
"""
sys_msg = SystemMessage(content=system_prompt)

tools = [
    multiply, add, subtract, divide, modulus,
    wiki_search, web_search, arvix_search, similar_question_search
]

# ---- Graph Builder ----

def build_graph(provider: str = "huggingface"):
    if provider == "huggingface":
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                repo_id="mosaicml/mpt-30b",
                temperature=0,
                huggingfacehub_api_token=hf_token
            )
        )
    elif provider == "google":
        llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
    else:
        raise ValueError("Invalid provider: choose 'huggingface' or 'google'.")

    llm_with_tools = llm.bind_tools(tools)

    def assistant(state: MessagesState):
        return {"messages": [llm_with_tools.invoke(state["messages"])]}

    def retriever(state: MessagesState):
        similar = vector_store.similarity_search(state["messages"][0].content)
        if similar:
            example_msg = HumanMessage(content=f"Here is a similar question:\n\n{similar[0].page_content}")
            return {"messages": [sys_msg] + state["messages"] + [example_msg]}
        return {"messages": [sys_msg] + state["messages"]}

    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_edge(START, "retriever")
    builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")

    return builder.compile()