Spaces:
Runtime error
Runtime error
File size: 26,392 Bytes
574b6ca 086b425 bbb34b9 0f20e93 757ebd9 3db6293 e80aab9 0f20e93 bbb34b9 e2bf8cd bbb34b9 c9b96c4 0f20e93 e2bf8cd c9b96c4 e2bf8cd 0f20e93 bbb34b9 0f20e93 bbb34b9 e2bf8cd c9b96c4 bbb34b9 0f20e93 c9b96c4 0f20e93 e2bf8cd 0f20e93 a8701c2 0f20e93 a8701c2 0f20e93 a8701c2 0f20e93 e2bf8cd bbb34b9 0f20e93 bbb34b9 0f20e93 a8701c2 bbb34b9 0f20e93 c9b96c4 0f20e93 a8701c2 0f20e93 bbb34b9 0f20e93 bbb34b9 0f20e93 a8701c2 e2bf8cd 0f20e93 bbb34b9 a8701c2 0f20e93 c9b96c4 a8701c2 c9b96c4 bbb34b9 0f20e93 a8701c2 0f20e93 c9b96c4 0f20e93 c9b96c4 0f20e93 c9b96c4 0f20e93 7963312 0f20e93 03ca047 0f20e93 e2bf8cd 0f20e93 e2bf8cd 70fa272 a39e119 e2bf8cd f96a820 0f20e93 31243f4 e2bf8cd eccf8e4 e2bf8cd 5289189 61f4b08 e2bf8cd a39e119 e2bf8cd bbb34b9 bf833c0 bbb34b9 0f20e93 bbb34b9 f96a820 a8701c2 5289189 0f20e93 bbb34b9 086b425 bbb34b9 0f20e93 bbb34b9 086b425 0f20e93 e2bf8cd 086b425 bbb34b9 c9b96c4 0f20e93 bbb34b9 03ca047 e2bf8cd bbb34b9 0f20e93 bbb34b9 0f20e93 e2bf8cd bbb34b9 e2bf8cd 5289189 bbb34b9 e2bf8cd bbb34b9 e80aab9 0f20e93 61f4b08 bbb34b9 086b425 bbb34b9 0f20e93 5289189 0f20e93 bbb34b9 0f20e93 e2bf8cd a8701c2 0f20e93 a8701c2 bbb34b9 7963312 e2bf8cd 7963312 0f20e93 086b425 0f20e93 e2bf8cd 0f20e93 e2bf8cd 0f20e93 086b425 e2bf8cd 7963312 e2bf8cd bf833c0 e2bf8cd 0f20e93 e2bf8cd 0f20e93 e2bf8cd 0f20e93 a8701c2 bbb34b9 e2bf8cd 0f20e93 e2bf8cd 0f20e93 bbb34b9 e80aab9 c9b96c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 |
import os
import gradio as gr
import requests
import pandas as pd
import re
import time
import json
import base64
from typing import Dict, Any, List, Optional, Tuple
from io import StringIO, BytesIO
import openpyxl
from PIL import Image
import PyPDF2
import ast
import math
import statistics
from datetime import datetime, timedelta
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class FileProcessor:
"""Handle various file types that GAIA questions might reference"""
@staticmethod
def process_excel_file(file_path: str) -> Dict[str, Any]:
"""Process Excel files and extract data"""
try:
# Try multiple sheet reading approaches
excel_data = {}
workbook = openpyxl.load_workbook(file_path, data_only=True)
for sheet_name in workbook.sheetnames:
sheet = workbook[sheet_name]
data = []
for row in sheet.iter_rows(values_only=True):
if any(cell is not None for cell in row):
data.append(row)
excel_data[sheet_name] = data
return excel_data
except Exception as e:
print(f"Excel processing error: {e}")
return {}
@staticmethod
def process_python_code(code_content: str) -> str:
"""Execute Python code safely and return output"""
try:
# Create a safe execution environment
safe_globals = {
'__builtins__': {
'print': print, 'len': len, 'range': range, 'sum': sum,
'max': max, 'min': min, 'abs': abs, 'round': round,
'int': int, 'float': float, 'str': str, 'list': list,
'dict': dict, 'set': set, 'tuple': tuple
},
'math': math,
'statistics': statistics
}
# Capture output
import io
import sys
old_stdout = sys.stdout
sys.stdout = captured_output = io.StringIO()
try:
exec(code_content, safe_globals)
output = captured_output.getvalue()
finally:
sys.stdout = old_stdout
return output.strip()
except Exception as e:
return f"Code execution error: {e}"
@staticmethod
def process_pdf_file(file_path: str) -> str:
"""Extract text from PDF files"""
try:
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text() + "\n"
return text.strip()
except Exception as e:
return f"PDF processing error: {e}"
class AdvancedWebSearchEngine:
"""Enhanced web search with multiple strategies"""
def __init__(self):
self.session = requests.Session()
self.session.headers.update({
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
})
self.serper_api_key = os.getenv("SERPER_API_KEY")
self.search_cache = {}
def search_with_serper(self, query: str, search_type: str = "search") -> Dict[str, Any]:
"""Enhanced Serper API search with different types"""
if not self.serper_api_key:
return {}
# Check cache first
cache_key = f"{query}_{search_type}"
if cache_key in self.search_cache:
return self.search_cache[cache_key]
try:
url = f"https://google.serper.dev/{search_type}"
payload = {
"q": query,
"num": 15, # Get more results
"gl": "us", # US results
"hl": "en" # English language
}
headers = {
"X-API-KEY": self.serper_api_key,
"Content-Type": "application/json"
}
response = self.session.post(url, json=payload, headers=headers, timeout=20)
result = response.json() if response.status_code == 200 else {}
# Cache the result
self.search_cache[cache_key] = result
return result
except Exception as e:
print(f"Serper API error: {e}")
return {}
def multi_strategy_search(self, query: str) -> Dict[str, Any]:
"""Try multiple search strategies for better results"""
results = {}
# Primary search
primary = self.search_with_serper(query)
if primary:
results['primary'] = primary
# Try variations if primary doesn't yield good results
variations = [
f'"{query}"', # Exact phrase
f"{query} site:wikipedia.org", # Wikipedia specific
f"{query} facts information", # More specific
]
for i, variation in enumerate(variations):
if len(results) < 2: # Don't overdo it
var_result = self.search_with_serper(variation)
if var_result and var_result != primary:
results[f'variation_{i}'] = var_result
return results
def extract_answer_from_results(self, results: Dict[str, Any], question: str) -> str:
"""Advanced answer extraction from search results"""
all_content = []
for result_type, data in results.items():
# Extract answer box
if "answerBox" in data:
answer_box = data["answerBox"]
if "answer" in answer_box:
return answer_box["answer"]
elif "snippet" in answer_box:
return answer_box["snippet"]
# Extract knowledge graph
if "knowledgeGraph" in data:
kg = data["knowledgeGraph"]
if "description" in kg:
all_content.append(kg["description"])
# Extract organic results
for organic in data.get("organic", []):
title = organic.get("title", "")
snippet = organic.get("snippet", "")
if title and snippet:
all_content.append(f"{title}: {snippet}")
# Combine all content
combined_content = "\n".join(all_content)
# Apply question-specific extraction
return self.extract_specific_answer(combined_content, question)
def extract_specific_answer(self, content: str, question: str) -> str:
"""Extract specific answers based on question type"""
q_lower = question.lower()
# Numbers and quantities
if any(word in q_lower for word in ['how many', 'how much', 'number of', 'count']):
numbers = re.findall(r'\b\d{1,10}\b', content)
if numbers:
# Return the most likely number (often the first one found)
return numbers[0]
# Names and people
if any(word in q_lower for word in ['who', 'whom', 'name', 'person']):
# Look for proper names (capitalized words)
names = re.findall(r'\b[A-Z][a-z]+ [A-Z][a-z]+(?:\s[A-Z][a-z]+)*\b', content)
if names:
if 'first name' in q_lower:
return names[0].split()[0]
elif 'last name' in q_lower or 'surname' in q_lower:
return names[0].split()[-1]
else:
return names[0]
# Dates and years
if any(word in q_lower for word in ['when', 'year', 'date']):
years = re.findall(r'\b(19|20)\d{2}\b', content)
if years:
return years[0]
dates = re.findall(r'\b\w+ \d{1,2}, \d{4}\b', content)
if dates:
return dates[0]
# Places and locations
if any(word in q_lower for word in ['where', 'location', 'place', 'country']):
# Look for place names
places = re.findall(r'\b[A-Z][a-z]+(?:\s[A-Z][a-z]+)*(?:\s(?:City|State|Country|Province|Region))?\b', content)
if places:
return places[0]
# Country codes
if 'country code' in q_lower:
codes = re.findall(r'\b[A-Z]{2,3}\b', content)
if codes:
return codes[0]
# Default: return first meaningful sentence
sentences = [s.strip() for s in content.split('.') if len(s.strip()) > 20]
return sentences[0] if sentences else "Answer not found in search results"
class EnhancedQuestionSolver:
"""Advanced question solver with multiple reasoning strategies"""
def __init__(self):
self.search_engine = AdvancedWebSearchEngine()
self.file_processor = FileProcessor()
def solve_question(self, question: str, files: List[str] = None) -> str:
"""Main question solving method with multiple strategies"""
print(f"๐ค Analyzing: {question[:100]}...")
# Handle file-based questions first
if files:
file_answer = self.handle_file_based_question(question, files)
if file_answer and file_answer != "File processing failed":
return file_answer
# Detect file references in question text
if self.has_file_references(question):
return self.handle_file_reference_question(question)
# Handle mathematical calculations
if self.is_math_question(question):
return self.handle_math_question(question)
# Handle multi-step reasoning questions
if self.needs_multi_step_reasoning(question):
return self.handle_multi_step_question(question)
# Handle specific structured questions
return self.handle_structured_question(question)
def has_file_references(self, question: str) -> bool:
"""Check if question references files"""
file_indicators = [
"attached", "excel file", "python code", "pdf", "image",
"spreadsheet", "document", "file contains", "in the file"
]
return any(indicator in question.lower() for indicator in file_indicators)
def handle_file_reference_question(self, question: str) -> str:
"""Handle questions that reference files but files aren't provided"""
# Try to search for the specific content mentioned
if "excel file" in question.lower() and "sales" in question.lower():
return "Unable to access attached Excel file. Please ensure file is properly uploaded."
elif "python code" in question.lower():
return "Unable to access attached Python code. Please ensure file is properly uploaded."
else:
return "File referenced but not accessible. Please provide the file."
def handle_file_based_question(self, question: str, files: List[str]) -> str:
"""Handle questions that involve file processing"""
try:
for file_path in files:
if file_path.endswith('.xlsx') or file_path.endswith('.xls'):
excel_data = self.file_processor.process_excel_file(file_path)
return self.analyze_excel_data(excel_data, question)
elif file_path.endswith('.py'):
with open(file_path, 'r') as f:
code_content = f.read()
return self.file_processor.process_python_code(code_content)
elif file_path.endswith('.pdf'):
pdf_text = self.file_processor.process_pdf_file(file_path)
return self.analyze_text_content(pdf_text, question)
except Exception as e:
return f"File processing failed: {e}"
return "File processing failed"
def analyze_excel_data(self, excel_data: Dict, question: str) -> str:
"""Analyze Excel data to answer questions"""
if not excel_data:
return "No data found in Excel file"
# Convert to DataFrame for analysis
try:
for sheet_name, data in excel_data.items():
if data:
df = pd.DataFrame(data[1:], columns=data[0]) # First row as header
# Handle sales analysis questions
if "sales" in question.lower():
if "total" in question.lower():
numeric_cols = df.select_dtypes(include=[int, float]).columns
if len(numeric_cols) > 0:
return str(df[numeric_cols[0]].sum())
elif "average" in question.lower():
numeric_cols = df.select_dtypes(include=[int, float]).columns
if len(numeric_cols) > 0:
return str(df[numeric_cols[0]].mean())
return "Could not analyze Excel data for this question"
except Exception as e:
return f"Excel analysis error: {e}"
def analyze_text_content(self, text: str, question: str) -> str:
"""Analyze text content to find answers"""
# Look for specific patterns based on question
if "surname" in question.lower() or "last name" in question.lower():
names = re.findall(r'\b[A-Z][a-z]+ [A-Z][a-z]+\b', text)
if names:
return names[0].split()[-1]
# Use search to find more specific information
search_query = f"{question} {text[:100]}"
results = self.search_engine.multi_strategy_search(search_query)
return self.search_engine.extract_answer_from_results(results, question)
def is_math_question(self, question: str) -> bool:
"""Detect mathematical questions"""
math_indicators = [
'calculate', 'compute', 'sum', 'average', 'mean',
'total', 'how many', 'how much', 'solve', 'equation'
]
return any(indicator in question.lower() for indicator in math_indicators)
def handle_math_question(self, question: str) -> str:
"""Handle mathematical questions"""
# Try to extract and solve mathematical expressions
expressions = re.findall(r'\b\d+\s*[\+\-\*\/]\s*\d+\b', question)
for expr in expressions:
try:
result = eval(expr)
return str(result)
except:
continue
# For word problems, search for the answer
results = self.search_engine.multi_strategy_search(question)
return self.search_engine.extract_answer_from_results(results, question)
def needs_multi_step_reasoning(self, question: str) -> bool:
"""Check if question needs multi-step reasoning"""
multi_step_indicators = [
"who played", "actor who", "person who", "after",
"before", "then", "subsequently", "following"
]
return any(indicator in question.lower() for indicator in multi_step_indicators)
def handle_multi_step_question(self, question: str) -> str:
"""Handle questions requiring multiple steps"""
# Break down complex questions
if "actor who played" in question.lower():
return self.handle_actor_chain_question(question)
elif "before and after" in question.lower():
return self.handle_sequence_question(question)
else:
return self.handle_structured_question(question)
def handle_actor_chain_question(self, question: str) -> str:
"""Handle questions about actors playing different roles"""
# Step 1: Find the initial actor/role
parts = question.split(" in ")
if len(parts) >= 2:
first_search = f"actor who played {parts[0].split('actor who played')[1]} in {parts[1].split(' play in')[0]}"
results1 = self.search_engine.multi_strategy_search(first_search)
actor_name = self.search_engine.extract_answer_from_results(results1, f"who is the actor")
if actor_name and actor_name != "Answer not found in search results":
# Step 2: Find what this actor played in the target show/movie
target = parts[1].split(" play in ")[1] if " play in " in parts[1] else parts[1]
second_search = f"{actor_name} role in {target}"
results2 = self.search_engine.multi_strategy_search(second_search)
return self.search_engine.extract_answer_from_results(results2, f"what role did {actor_name} play")
# Fallback to single search
results = self.search_engine.multi_strategy_search(question)
return self.search_engine.extract_answer_from_results(results, question)
def handle_sequence_question(self, question: str) -> str:
"""Handle questions about sequences (before/after)"""
results = self.search_engine.multi_strategy_search(question)
return self.search_engine.extract_answer_from_results(results, question)
def handle_structured_question(self, question: str) -> str:
"""Handle general structured questions with enhanced search"""
results = self.search_engine.multi_strategy_search(question)
answer = self.search_engine.extract_answer_from_results(results, question)
# If no good answer found, try rephrasing the question
if answer == "Answer not found in search results":
rephrased_questions = self.rephrase_question(question)
for rq in rephrased_questions:
results = self.search_engine.multi_strategy_search(rq)
answer = self.search_engine.extract_answer_from_results(results, question)
if answer != "Answer not found in search results":
break
return answer
def rephrase_question(self, question: str) -> List[str]:
"""Generate alternative phrasings of the question"""
rephrased = []
# Add question marks if missing
if not question.endswith('?'):
rephrased.append(question + '?')
# Remove question words for factual search
words_to_remove = ['what is', 'who is', 'where is', 'when is', 'how many', 'how much']
for word in words_to_remove:
if word in question.lower():
rephrased.append(question.lower().replace(word, '').strip())
# Add context words
context_words = ['information about', 'facts about', 'details about']
for context in context_words:
rephrased.append(f"{context} {question}")
return rephrased[:3] # Limit to 3 rephrasings
def get_enhanced_api_status():
"""Check API status with more details"""
status = []
if os.getenv("SERPER_API_KEY"):
status.append("โ
Serper API: Configured")
else:
status.append("โ Serper API: Missing - Get key at serper.dev")
# Check if we can access file processing libraries
try:
import openpyxl
status.append("โ
Excel Processing: Available")
except ImportError:
status.append("โ Excel Processing: openpyxl not available")
try:
import PyPDF2
status.append("โ
PDF Processing: Available")
except ImportError:
status.append("โ PDF Processing: PyPDF2 not available")
return "\n".join(status)
def run_enhanced_gaia_evaluation(profile: gr.OAuthProfile | None):
"""Run GAIA evaluation with enhanced solving capabilities"""
if not profile:
return "Please log in to Hugging Face first.", None
# Check API status
api_status = get_enhanced_api_status()
if "โ Serper API" in api_status:
return f"โ ๏ธ Serper API not configured!\n\n{api_status}", None
username = profile.username
questions_url = f"{DEFAULT_API_URL}/questions"
submit_url = f"{DEFAULT_API_URL}/submit"
try:
solver = EnhancedQuestionSolver()
print("โ
Enhanced question solver initialized")
except Exception as e:
return f"โ Initialization failed: {e}", None
try:
print("๐ฅ Fetching questions...")
r = requests.get(questions_url, timeout=30)
r.raise_for_status()
questions = r.json()
print(f"โ
Got {len(questions)} questions")
except Exception as e:
return f"โ Failed to fetch questions: {e}", None
answers = []
logs = []
for i, item in enumerate(questions):
task_id = item.get("task_id")
question = item.get("question")
files = item.get("files", []) # Get attached files if any
if not task_id or not question:
continue
print(f"\n๐ Processing {i+1}/{len(questions)}: {task_id}")
print(f"๐ Question: {question[:100]}{'...' if len(question) > 100 else ''}")
if files:
print(f"๐ Files: {files}")
try:
start_time = time.time()
answer = solver.solve_question(question, files)
processing_time = time.time() - start_time
answers.append({"task_id": task_id, "submitted_answer": answer})
logs.append({
"Task ID": task_id,
"Question": question[:150] + "..." if len(question) > 150 else question,
"Answer": answer[:100] + "..." if len(answer) > 100 else answer,
"Files": len(files) if files else 0,
"Time (s)": f"{processing_time:.2f}"
})
print(f"โ
Answer: {answer[:80]}{'...' if len(answer) > 80 else ''}")
time.sleep(0.5) # Rate limiting for API
except Exception as e:
error_msg = f"Error: {str(e)}"
answers.append({"task_id": task_id, "submitted_answer": error_msg})
logs.append({
"Task ID": task_id,
"Question": question[:150] + "..." if len(question) > 150 else question,
"Answer": error_msg,
"Files": len(files) if files else 0,
"Time (s)": "Error"
})
print(f"โ Error: {e}")
# Submit answers
print(f"\n๐ค Submitting {len(answers)} answers...")
payload = {
"username": username,
"agent_code": f"https://huggingface.co/spaces/{os.getenv('SPACE_ID', '')}/tree/main",
"answers": answers
}
try:
resp = requests.post(submit_url, json=payload, timeout=300) # Increased timeout
resp.raise_for_status()
data = resp.json()
score = data.get('score', 'N/A')
correct = data.get('correct_count', '?')
total = data.get('total_attempted', '?')
result_message = f"""๐ฏ ENHANCED GAIA EVALUATION RESULTS
๐ Final Score: {score}% ({correct}/{total} correct)
๐ง System Status:
{api_status}
๐ Enhanced Features:
โข Multi-strategy web search with result caching
โข Advanced file processing (Excel, PDF, Python)
โข Multi-step reasoning for complex questions
โข Context-aware answer extraction
โข Question rephrasing for better results
โข Specialized handlers for different question types
๐ Performance Improvements:
โข Better search result processing
โข Enhanced name/number extraction
โข Improved mathematical computation
โข File-based question handling
โข Actor chain and sequence reasoning"""
return result_message, pd.DataFrame(logs)
except Exception as e:
return f"โ Submission failed: {str(e)}", pd.DataFrame(logs)
# Enhanced Gradio Interface
with gr.Blocks(title="Enhanced GAIA Agent", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# ๐ง Enhanced GAIA Benchmark Agent v2.0
**๐ง Required Setup:**
- `SERPER_API_KEY` environment variable - Get 2500 free searches/month at [serper.dev](https://serper.dev)
**โก Advanced Capabilities:**
- ๐ Multi-strategy web search with intelligent caching
- ๐ Excel/CSV file processing and analysis
- ๐ Python code execution for computational questions
- ๐ PDF document text extraction and analysis
- ๐งฎ Advanced mathematical problem solving
- ๐ญ Multi-step reasoning for complex actor/person chains
- ๐ฏ Context-aware answer extraction with multiple fallbacks
- ๐ Question rephrasing for better search results
**๐ Expected Performance:**
- Significantly improved accuracy on GAIA benchmark
- Better handling of file-based questions
- Enhanced name/number/date extraction
- Robust error handling and fallback strategies
""")
gr.LoginButton()
with gr.Row():
with gr.Column():
api_status_display = gr.Textbox(
label="๐ง System Status",
value=get_enhanced_api_status(),
lines=4,
interactive=False
)
run_button = gr.Button(
"๐ Run Enhanced GAIA Evaluation",
variant="primary",
size="lg"
)
with gr.Row():
results_display = gr.Textbox(
label="๐ Evaluation Results",
lines=15,
interactive=False
)
with gr.Row():
detailed_results = gr.DataFrame(
label="๐ Detailed Question Analysis",
wrap=True,
interactive=False
)
# Refresh status button
refresh_status = gr.Button("๐ Refresh Status", size="sm")
refresh_status.click(
lambda: get_enhanced_api_status(),
outputs=[api_status_display]
)
run_button.click(
run_enhanced_gaia_evaluation,
outputs=[results_display, detailed_results]
)
if __name__ == "__main__":
demo.launch(share=True, debug=True) |