File size: 6,578 Bytes
835936b
89373ab
835936b
 
89373ab
835936b
 
 
 
 
 
 
 
89373ab
 
835936b
 
89373ab
 
835936b
89373ab
835936b
89373ab
835936b
 
89373ab
c45ce5d
835936b
 
 
89373ab
c45ce5d
835936b
 
 
89373ab
c45ce5d
835936b
 
 
89373ab
c45ce5d
835936b
 
 
 
 
 
c45ce5d
835936b
 
 
 
c45ce5d
89373ab
 
 
 
835936b
89373ab
 
 
835936b
 
 
c45ce5d
89373ab
 
 
 
835936b
89373ab
 
 
835936b
 
89373ab
c45ce5d
89373ab
 
 
 
 
5c13656
89373ab
 
835936b
c45ce5d
 
ace96c4
c45ce5d
 
 
 
 
 
 
 
 
 
ace96c4
89373ab
835936b
89373ab
835936b
89373ab
 
 
 
695f802
89373ab
 
 
 
 
 
 
695f802
89373ab
 
 
 
 
 
 
 
695f802
89373ab
 
 
 
 
 
 
 
 
 
695f802
89373ab
695f802
89373ab
 
 
 
 
835936b
 
 
 
8d36e0e
89373ab
835936b
89373ab
 
835936b
 
89373ab
 
695f802
 
89373ab
 
 
 
 
 
 
 
 
835936b
89373ab
835936b
89373ab
835936b
 
89373ab
835936b
 
89373ab
 
 
 
 
835936b
 
 
 
89373ab
835936b
 
89373ab
 
835936b
89373ab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os
import json
from dotenv import load_dotenv

# ---- Environment & Setup ----
load_dotenv()
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"

hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN")

# ---- Imports ----
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import Chroma
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.schema import Document

# ---- Tools ----

@tool
def multiply(a: int, b: int) -> int:
    """Multiply two integers and return the result."""
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two integers and return the result."""
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract second integer from the first and return the result."""
    return a - b

@tool
def divide(a: int, b: int) -> float:
    """Divide first integer by second and return the result as a float."""
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Return the remainder when first integer is divided by second."""
    return a % b

@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for the given query and return formatted documents."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"wiki_results": formatted}

@tool
def web_search(query: str) -> str:
    """Search the web using Tavily API for the given query."""
    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    formatted = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"web_results": formatted}

@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for academic papers related to the query."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"arvix_results": formatted}

@tool
def similar_question_search(query: str) -> str:
    """Find similar previously answered questions using vector search."""
    matched_docs = vector_store.similarity_search(query, 3)
    formatted = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in matched_docs
        ]
    )
    return {"similar_questions": formatted}



# ---- Embedding & Vector Store ----

embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")

json_QA = []
with open('metadata.jsonl', 'r') as jsonl_file:
    for line in jsonl_file:
        json_QA.append(json.loads(line))

documents = [
    Document(
        page_content=f"Question : {sample['Question']}\n\nFinal answer : {sample['Final answer']}",
        metadata={"source": sample["task_id"]}
    )
    for sample in json_QA
]

vector_store = Chroma.from_documents(
    documents=documents,
    embedding=embeddings,
    persist_directory="./chroma_db",
    collection_name="my_collection"
)
vector_store.persist()
print("Documents inserted:", vector_store._collection.count())

@tool
def similar_question_search(query: str) -> str:
    matched_docs = vector_store.similarity_search(query, 3)
    formatted = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in matched_docs
        ]
    )
    return {"similar_questions": formatted}

# ---- System Prompt ----

system_prompt = """
You are a helpful assistant tasked with answering questions using a set of tools. 
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: 
FINAL ANSWER: [YOUR FINAL ANSWER]. 
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings...
"""

sys_msg = SystemMessage(content=system_prompt)

# ---- Tool List ----

tools = [
    multiply, add, subtract, divide, modulus,
    wiki_search, web_search, arvix_search, similar_question_search
]

# ---- Graph Construction ----

def build_graph(provider: str = "huggingface"):
    if provider == "huggingface":
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                repo_id="mosaicml/mpt-30b",
                temperature=0,
                huggingfacehub_api_token=hf_token
            )
        )
    elif provider == "google":
        llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
    else:
        raise ValueError("Invalid provider: choose 'huggingface' or 'google'.")

    llm_with_tools = llm.bind_tools(tools)

    def assistant(state: MessagesState):
        return {"messages": [llm_with_tools.invoke(state["messages"])]}

    def retriever(state: MessagesState):
        similar = vector_store.similarity_search(state["messages"][0].content)
        if similar:
            example_msg = HumanMessage(content=f"Here is a similar question:\n\n{similar[0].page_content}")
            return {"messages": [sys_msg] + state["messages"] + [example_msg]}
        return {"messages": [sys_msg] + state["messages"]}

    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_edge(START, "retriever")
    builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")

    return builder.compile()