Update app.py
Browse files
app.py
CHANGED
@@ -3,10 +3,12 @@ from fastapi.responses import StreamingResponse
|
|
3 |
from pydantic import BaseModel
|
4 |
from transformers import pipeline, TextStreamer
|
5 |
import torch
|
6 |
-
import
|
7 |
import threading
|
|
|
8 |
import time
|
9 |
-
import
|
|
|
10 |
from duckduckgo_search import DDGS
|
11 |
|
12 |
# ------------------------
|
@@ -15,100 +17,89 @@ from duckduckgo_search import DDGS
|
|
15 |
MAIN_MODEL = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
16 |
QUERY_MODEL = "HuggingFaceTB/SmolLM2-360M-Instruct"
|
17 |
SUMMARY_MODEL = "HuggingFaceTB/SmolLM2-360M-Instruct"
|
18 |
-
DEVICE =
|
|
|
|
|
|
|
|
|
19 |
KG_UPDATE_INTERVAL = 60 # seconds
|
20 |
-
|
21 |
|
22 |
# ------------------------
|
23 |
# API + Models Init
|
24 |
# ------------------------
|
25 |
app = FastAPI()
|
26 |
|
|
|
27 |
generator = pipeline("text-generation", model=MAIN_MODEL, device=DEVICE)
|
28 |
query_generator = pipeline("text-generation", model=QUERY_MODEL, device=DEVICE)
|
29 |
summarizer = pipeline("text-generation", model=SUMMARY_MODEL, device=DEVICE)
|
|
|
30 |
|
31 |
-
knowledge_graph = {}
|
32 |
-
|
33 |
-
# ------------------------
|
34 |
-
# Data Model
|
35 |
-
# ------------------------
|
36 |
class ModelInput(BaseModel):
|
37 |
prompt: str
|
38 |
-
max_new_tokens: int =
|
39 |
|
40 |
# ------------------------
|
41 |
# KG Functions
|
42 |
# ------------------------
|
43 |
-
def clean_text(text):
|
44 |
-
return re.sub(r"\s+", " ", text).strip()
|
45 |
-
|
46 |
def generate_dynamic_query():
|
47 |
-
"""Generates a realistic short search query."""
|
48 |
prompt = (
|
49 |
"Generate a short, specific search query about technology, startups, AI, or science. "
|
50 |
"Be creative, realistic, and output only the query with no extra words."
|
51 |
)
|
52 |
output = query_generator(
|
53 |
prompt,
|
54 |
-
max_new_tokens=
|
55 |
truncation=True,
|
56 |
do_sample=True,
|
57 |
temperature=1.0,
|
58 |
top_p=0.9
|
59 |
)[0]["generated_text"].strip()
|
60 |
-
# Take only first line and remove 'Generate'
|
61 |
query = output.split("\n")[0]
|
62 |
query = re.sub(r"^Generate.*?:", "", query).strip()
|
63 |
return query
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
def search_ddg(query):
|
66 |
with DDGS() as ddgs:
|
67 |
results = list(ddgs.text(query, max_results=5))
|
68 |
-
|
69 |
-
|
70 |
-
def summarize_text(text):
|
71 |
-
summary_prompt = f"Summarize this in 3 concise sentences:\n\n{text}"
|
72 |
-
return summarizer(summary_prompt, max_new_tokens=100, truncation=True)[0]["generated_text"].strip()
|
73 |
|
74 |
def kg_updater():
|
75 |
while True:
|
76 |
try:
|
77 |
query = generate_dynamic_query()
|
78 |
-
if not query or len(query) < 3:
|
79 |
-
time.sleep(KG_UPDATE_INTERVAL)
|
80 |
-
continue
|
81 |
-
|
82 |
print(f"[KG Updater] Searching DDG for query: {query}")
|
83 |
-
raw_text =
|
84 |
-
if len(raw_text) <
|
85 |
print("[KG Updater] Too little info found, retrying next cycle...")
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
knowledge_graph[query] = {
|
91 |
-
"summary": summary,
|
92 |
-
"timestamp": time.time()
|
93 |
-
}
|
94 |
-
print(f"[KG Updater] Knowledge graph updated for query: {query}")
|
95 |
-
|
96 |
except Exception as e:
|
97 |
-
print(f"[KG Updater]
|
98 |
time.sleep(KG_UPDATE_INTERVAL)
|
99 |
|
100 |
-
# Start KG updater thread
|
101 |
threading.Thread(target=kg_updater, daemon=True).start()
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
return user_prompt
|
112 |
|
113 |
# ------------------------
|
114 |
# Streaming Generation
|
@@ -122,18 +113,18 @@ async def generate_stream(input: ModelInput):
|
|
122 |
tokenizer = generator.tokenizer
|
123 |
|
124 |
def enqueue_token(token_ids):
|
125 |
-
if hasattr(token_ids, "tolist"):
|
126 |
token_ids = token_ids.tolist()
|
127 |
text = tokenizer.decode(token_ids, skip_special_tokens=True)
|
128 |
q.put(text)
|
129 |
|
130 |
streamer = TextStreamer(tokenizer, skip_prompt=True)
|
131 |
-
streamer.put = enqueue_token
|
132 |
|
133 |
enriched_prompt = inject_relevant_kg(input.prompt)
|
134 |
generator(
|
135 |
enriched_prompt,
|
136 |
-
max_new_tokens=input.max_new_tokens,
|
137 |
do_sample=False,
|
138 |
streamer=streamer
|
139 |
)
|
@@ -146,29 +137,39 @@ async def generate_stream(input: ModelInput):
|
|
146 |
|
147 |
async def event_generator():
|
148 |
while True:
|
149 |
-
|
150 |
-
if
|
151 |
break
|
152 |
-
yield
|
153 |
|
154 |
return StreamingResponse(event_generator(), media_type="text/plain")
|
155 |
|
156 |
# ------------------------
|
157 |
-
#
|
158 |
# ------------------------
|
159 |
@app.post("/generate")
|
160 |
async def generate_text(input: ModelInput):
|
161 |
try:
|
162 |
enriched_prompt = inject_relevant_kg(input.prompt)
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
165 |
except Exception as e:
|
166 |
raise HTTPException(status_code=500, detail=str(e))
|
167 |
|
|
|
|
|
|
|
168 |
@app.get("/knowledge")
|
169 |
async def get_knowledge():
|
170 |
return knowledge_graph
|
171 |
|
|
|
|
|
|
|
172 |
@app.get("/")
|
173 |
async def root():
|
174 |
-
return {"message": "Welcome to the
|
|
|
3 |
from pydantic import BaseModel
|
4 |
from transformers import pipeline, TextStreamer
|
5 |
import torch
|
6 |
+
import re
|
7 |
import threading
|
8 |
+
import queue
|
9 |
import time
|
10 |
+
import random
|
11 |
+
import duckduckgo_search
|
12 |
from duckduckgo_search import DDGS
|
13 |
|
14 |
# ------------------------
|
|
|
17 |
MAIN_MODEL = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
18 |
QUERY_MODEL = "HuggingFaceTB/SmolLM2-360M-Instruct"
|
19 |
SUMMARY_MODEL = "HuggingFaceTB/SmolLM2-360M-Instruct"
|
20 |
+
DEVICE = 0 if torch.cuda.is_available() else "cpu"
|
21 |
+
|
22 |
+
DEEPSEEK_MAX_TOKENS = 64000
|
23 |
+
SMOLLM_MAX_TOKENS = 4192
|
24 |
+
|
25 |
KG_UPDATE_INTERVAL = 60 # seconds
|
26 |
+
knowledge_graph = {}
|
27 |
|
28 |
# ------------------------
|
29 |
# API + Models Init
|
30 |
# ------------------------
|
31 |
app = FastAPI()
|
32 |
|
33 |
+
print("[Init] Loading models...")
|
34 |
generator = pipeline("text-generation", model=MAIN_MODEL, device=DEVICE)
|
35 |
query_generator = pipeline("text-generation", model=QUERY_MODEL, device=DEVICE)
|
36 |
summarizer = pipeline("text-generation", model=SUMMARY_MODEL, device=DEVICE)
|
37 |
+
print("[Init] Models loaded.")
|
38 |
|
|
|
|
|
|
|
|
|
|
|
39 |
class ModelInput(BaseModel):
|
40 |
prompt: str
|
41 |
+
max_new_tokens: int = DEEPSEEK_MAX_TOKENS
|
42 |
|
43 |
# ------------------------
|
44 |
# KG Functions
|
45 |
# ------------------------
|
|
|
|
|
|
|
46 |
def generate_dynamic_query():
|
|
|
47 |
prompt = (
|
48 |
"Generate a short, specific search query about technology, startups, AI, or science. "
|
49 |
"Be creative, realistic, and output only the query with no extra words."
|
50 |
)
|
51 |
output = query_generator(
|
52 |
prompt,
|
53 |
+
max_new_tokens=SMOLLM_MAX_TOKENS,
|
54 |
truncation=True,
|
55 |
do_sample=True,
|
56 |
temperature=1.0,
|
57 |
top_p=0.9
|
58 |
)[0]["generated_text"].strip()
|
|
|
59 |
query = output.split("\n")[0]
|
60 |
query = re.sub(r"^Generate.*?:", "", query).strip()
|
61 |
return query
|
62 |
|
63 |
+
def summarize_text(text):
|
64 |
+
summary_prompt = f"Summarize this in 3 concise sentences:\n\n{text}"
|
65 |
+
return summarizer(
|
66 |
+
summary_prompt,
|
67 |
+
max_new_tokens=SMOLLM_MAX_TOKENS,
|
68 |
+
truncation=True
|
69 |
+
)[0]["generated_text"].strip()
|
70 |
+
|
71 |
def search_ddg(query):
|
72 |
with DDGS() as ddgs:
|
73 |
results = list(ddgs.text(query, max_results=5))
|
74 |
+
combined = " ".join(r["body"] for r in results if "body" in r)
|
75 |
+
return combined.strip()
|
|
|
|
|
|
|
76 |
|
77 |
def kg_updater():
|
78 |
while True:
|
79 |
try:
|
80 |
query = generate_dynamic_query()
|
|
|
|
|
|
|
|
|
81 |
print(f"[KG Updater] Searching DDG for query: {query}")
|
82 |
+
raw_text = search_ddg(query)
|
83 |
+
if len(raw_text) < 50:
|
84 |
print("[KG Updater] Too little info found, retrying next cycle...")
|
85 |
+
else:
|
86 |
+
summary = summarize_text(raw_text)
|
87 |
+
knowledge_graph[query] = summary
|
88 |
+
print(f"[KG Updater] Knowledge graph updated for query: {query}")
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
except Exception as e:
|
90 |
+
print(f"[KG Updater ERROR] {e}")
|
91 |
time.sleep(KG_UPDATE_INTERVAL)
|
92 |
|
|
|
93 |
threading.Thread(target=kg_updater, daemon=True).start()
|
94 |
|
95 |
+
def inject_relevant_kg(prompt):
|
96 |
+
relevant_info = ""
|
97 |
+
for k, v in knowledge_graph.items():
|
98 |
+
if any(word.lower() in prompt.lower() for word in k.split()):
|
99 |
+
relevant_info += f"\n[KG:{k}] {v}"
|
100 |
+
if relevant_info:
|
101 |
+
return f"{prompt}\n\nRelevant background info:\n{relevant_info}"
|
102 |
+
return prompt
|
|
|
103 |
|
104 |
# ------------------------
|
105 |
# Streaming Generation
|
|
|
113 |
tokenizer = generator.tokenizer
|
114 |
|
115 |
def enqueue_token(token_ids):
|
116 |
+
if hasattr(token_ids, "tolist"):
|
117 |
token_ids = token_ids.tolist()
|
118 |
text = tokenizer.decode(token_ids, skip_special_tokens=True)
|
119 |
q.put(text)
|
120 |
|
121 |
streamer = TextStreamer(tokenizer, skip_prompt=True)
|
122 |
+
streamer.put = enqueue_token # intercept tokens
|
123 |
|
124 |
enriched_prompt = inject_relevant_kg(input.prompt)
|
125 |
generator(
|
126 |
enriched_prompt,
|
127 |
+
max_new_tokens=min(input.max_new_tokens, DEEPSEEK_MAX_TOKENS),
|
128 |
do_sample=False,
|
129 |
streamer=streamer
|
130 |
)
|
|
|
137 |
|
138 |
async def event_generator():
|
139 |
while True:
|
140 |
+
token = q.get()
|
141 |
+
if token is None:
|
142 |
break
|
143 |
+
yield token
|
144 |
|
145 |
return StreamingResponse(event_generator(), media_type="text/plain")
|
146 |
|
147 |
# ------------------------
|
148 |
+
# Non-stream endpoint
|
149 |
# ------------------------
|
150 |
@app.post("/generate")
|
151 |
async def generate_text(input: ModelInput):
|
152 |
try:
|
153 |
enriched_prompt = inject_relevant_kg(input.prompt)
|
154 |
+
output = generator(
|
155 |
+
enriched_prompt,
|
156 |
+
max_new_tokens=min(input.max_new_tokens, DEEPSEEK_MAX_TOKENS),
|
157 |
+
do_sample=False
|
158 |
+
)[0]["generated_text"]
|
159 |
+
return {"generated_text": output}
|
160 |
except Exception as e:
|
161 |
raise HTTPException(status_code=500, detail=str(e))
|
162 |
|
163 |
+
# ------------------------
|
164 |
+
# KG endpoint
|
165 |
+
# ------------------------
|
166 |
@app.get("/knowledge")
|
167 |
async def get_knowledge():
|
168 |
return knowledge_graph
|
169 |
|
170 |
+
# ------------------------
|
171 |
+
# Root endpoint
|
172 |
+
# ------------------------
|
173 |
@app.get("/")
|
174 |
async def root():
|
175 |
+
return {"message": "Welcome to the Streaming Model API with KG Updater!"}
|