|
{ |
|
"cells": [ |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 2, |
|
"id": "78ab80c4-8e25-4464-b710-087d385349fe", |
|
"metadata": {}, |
|
"outputs": [ |
|
{ |
|
"name": "stderr", |
|
"output_type": "stream", |
|
"text": [ |
|
"/opt/homebrew/Cellar/jupyterlab/4.4.0/libexec/lib/python3.13/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", |
|
" from .autonotebook import tqdm as notebook_tqdm\n" |
|
] |
|
} |
|
], |
|
"source": [ |
|
"import gradio as gr\n", |
|
"from PIL import Image\n", |
|
"import torch\n", |
|
"import numpy as np\n", |
|
"import faiss\n", |
|
"import json\n", |
|
"\n", |
|
"from transformers import (\n", |
|
" BlipProcessor,\n", |
|
" BlipForConditionalGeneration,\n", |
|
" CLIPProcessor,\n", |
|
" CLIPModel\n", |
|
")\n", |
|
"from datasets import load_dataset" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 3, |
|
"id": "9e6fe9c1-df25-41ad-ab27-f6fc20ecb956", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"wikiart_dataset = load_dataset(\"huggan/wikiart\", split=\"train\")\n", |
|
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"mps\" if torch.backends.mps.is_available() else \"cpu\")" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 4, |
|
"id": "b9da3ff0-62e6-4686-af9f-38183f675788", |
|
"metadata": {}, |
|
"outputs": [ |
|
{ |
|
"name": "stderr", |
|
"output_type": "stream", |
|
"text": [ |
|
"Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.52, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.\n" |
|
] |
|
} |
|
], |
|
"source": [ |
|
"blip_processor = BlipProcessor.from_pretrained(\"Salesforce/blip-image-captioning-base\")\n", |
|
"blip_model = BlipForConditionalGeneration.from_pretrained(\"Salesforce/blip-image-captioning-base\").to(device).eval()" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 5, |
|
"id": "12d9402a-fdbe-4ade-99ed-26f5d7f9ccfd", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"clip_model = CLIPModel.from_pretrained(\"openai/clip-vit-base-patch32\").to(device).eval()\n", |
|
"clip_processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-base-patch32\")" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 6, |
|
"id": "d4f5e7b2-c873-4495-8ad1-9e32f4f1fbe1", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"with open(\"../create_embeddings/wikiart_embeddings.json\", \"r\", encoding=\"utf-8\") as f:\n", |
|
" data = json.load(f)" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 7, |
|
"id": "87bc4121-f316-4769-bf5d-197db30fe2a3", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"image_index = faiss.read_index(\"../create_index/image_index.faiss\")\n", |
|
"text_index = faiss.read_index(\"../create_index/text_index.faiss\")" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 8, |
|
"id": "b41d1e5c-d606-4501-a22c-3cde576361d7", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def generate_caption(image: Image.Image):\n", |
|
" inputs = blip_processor(image, return_tensors=\"pt\").to(device)\n", |
|
" with torch.no_grad():\n", |
|
" caption_ids = blip_model.generate(**inputs)\n", |
|
" caption = blip_processor.decode(caption_ids[0], skip_special_tokens=True)\n", |
|
" return caption" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 9, |
|
"id": "263c8672-f4b4-46b7-abf0-483ccfb83c86", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def get_clip_text_embedding(text):\n", |
|
" inputs = clip_processor(text=[text], return_tensors=\"pt\", padding=True).to(device)\n", |
|
" with torch.no_grad():\n", |
|
" features = clip_model.get_text_features(**inputs)\n", |
|
" features = features.cpu().numpy().astype(\"float32\")\n", |
|
" faiss.normalize_L2(features)\n", |
|
" return features" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 10, |
|
"id": "34827bd8-e0da-4252-b168-3c79f2d2fb02", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def get_clip_image_embedding(image):\n", |
|
" inputs = clip_processor(images=image, return_tensors=\"pt\").to(device)\n", |
|
" with torch.no_grad():\n", |
|
" features = clip_model.get_image_features(**inputs)\n", |
|
" features = features.cpu().numpy().astype(\"float32\")\n", |
|
" faiss.normalize_L2(features)\n", |
|
" return features" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 11, |
|
"id": "ec6399ac-a40d-49f7-9831-3085fca484c9", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def get_results_with_images(embedding, index, top_k=2):\n", |
|
" D, I = index.search(embedding, top_k)\n", |
|
" results = []\n", |
|
" for idx in I[0]:\n", |
|
" item = data[idx]\n", |
|
" img_id = int(item[\"id\"])\n", |
|
" try:\n", |
|
" img = wikiart_dataset[img_id][\"image\"]\n", |
|
" except IndexError:\n", |
|
" continue\n", |
|
" caption = f\"ID: {item['id']}\\n{item['caption']}\"\n", |
|
" results.append((img, caption))\n", |
|
" return results" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 12, |
|
"id": "76adeb1c-85d6-4e53-9c93-a312c21b71b8", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [ |
|
"def search_similar_images(image: Image.Image):\n", |
|
" caption = generate_caption(image)\n", |
|
"\n", |
|
" text_emb = get_clip_text_embedding(caption)\n", |
|
" image_emb = get_clip_image_embedding(image)\n", |
|
"\n", |
|
" text_results = get_results_with_images(text_emb, text_index)\n", |
|
" image_results = get_results_with_images(image_emb, image_index)\n", |
|
"\n", |
|
" return caption, text_results, image_results" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 13, |
|
"id": "da86df12-a996-4d1d-ae42-354984cf6dc2", |
|
"metadata": {}, |
|
"outputs": [ |
|
{ |
|
"name": "stdout", |
|
"output_type": "stream", |
|
"text": [ |
|
"* Running on local URL: http://127.0.0.1:7862\n", |
|
"* To create a public link, set `share=True` in `launch()`.\n" |
|
] |
|
}, |
|
{ |
|
"data": { |
|
"text/html": [ |
|
"<div><iframe src=\"http://127.0.0.1:7862/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>" |
|
], |
|
"text/plain": [ |
|
"<IPython.core.display.HTML object>" |
|
] |
|
}, |
|
"metadata": {}, |
|
"output_type": "display_data" |
|
}, |
|
{ |
|
"data": { |
|
"text/plain": [] |
|
}, |
|
"execution_count": 13, |
|
"metadata": {}, |
|
"output_type": "execute_result" |
|
} |
|
], |
|
"source": [ |
|
"demo = gr.Interface(\n", |
|
" fn=search_similar_images,\n", |
|
" inputs=gr.Image(label=\"Загрузите изображение\", type=\"pil\"),\n", |
|
" outputs=[\n", |
|
" gr.Textbox(label=\"📜 Сгенерированное описание\"),\n", |
|
" gr.Gallery(label=\"🔍 Похожие по описанию (CLIP)\", height=\"auto\", columns=2),\n", |
|
" gr.Gallery(label=\"🎨 Похожие по изображению (CLIP)\", height=\"auto\", columns=2)\n", |
|
" ],\n", |
|
" title=\"🎨 Semantic WikiArt Search (BLIP + CLIP)\",\n", |
|
" description=\"Загрузите изображение. Модель BLIP сгенерирует описание, а CLIP найдёт похожие картины по тексту и изображению.\"\n", |
|
")\n", |
|
"\n", |
|
"demo.launch()" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 14, |
|
"id": "55fbac06-4781-4074-a1e6-26ff758bbfe0", |
|
"metadata": {}, |
|
"outputs": [ |
|
{ |
|
"name": "stdout", |
|
"output_type": "stream", |
|
"text": [ |
|
"Rerunning server... use `close()` to stop if you need to change `launch()` parameters.\n", |
|
"----\n" |
|
] |
|
}, |
|
{ |
|
"name": "stderr", |
|
"output_type": "stream", |
|
"text": [ |
|
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n", |
|
"To disable this warning, you can either:\n", |
|
"\t- Avoid using `tokenizers` before the fork if possible\n", |
|
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n" |
|
] |
|
}, |
|
{ |
|
"name": "stdout", |
|
"output_type": "stream", |
|
"text": [ |
|
"* Running on public URL: https://ba46916423948a3a69.gradio.live\n", |
|
"\n", |
|
"This share link expires in 1 week. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n" |
|
] |
|
}, |
|
{ |
|
"data": { |
|
"text/html": [ |
|
"<div><iframe src=\"https://ba46916423948a3a69.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>" |
|
], |
|
"text/plain": [ |
|
"<IPython.core.display.HTML object>" |
|
] |
|
}, |
|
"metadata": {}, |
|
"output_type": "display_data" |
|
}, |
|
{ |
|
"data": { |
|
"text/plain": [] |
|
}, |
|
"execution_count": 14, |
|
"metadata": {}, |
|
"output_type": "execute_result" |
|
} |
|
], |
|
"source": [ |
|
"demo.launch(server_name=\"0.0.0.0\", server_port=7860, share=True)\n" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"id": "c44447c3-0709-4419-a6a4-fc451f80702a", |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [] |
|
} |
|
], |
|
"metadata": { |
|
"kernelspec": { |
|
"display_name": "Python 3 (ipykernel)", |
|
"language": "python", |
|
"name": "python3" |
|
}, |
|
"language_info": { |
|
"codemirror_mode": { |
|
"name": "ipython", |
|
"version": 3 |
|
}, |
|
"file_extension": ".py", |
|
"mimetype": "text/x-python", |
|
"name": "python", |
|
"nbconvert_exporter": "python", |
|
"pygments_lexer": "ipython3", |
|
"version": "3.13.3" |
|
} |
|
}, |
|
"nbformat": 4, |
|
"nbformat_minor": 5 |
|
} |
|
|