File size: 7,126 Bytes
5751ffd
7fecea0
 
 
 
 
 
71c32c3
 
1f97f51
7fecea0
 
 
 
 
4c12131
e9b5918
4c12131
efa8780
7fecea0
b29fa42
7fecea0
e1a016b
 
 
5751ffd
 
 
e1a016b
5751ffd
 
e1a016b
3ee8e25
5751ffd
 
 
 
 
 
 
e9b5918
5d87a8b
e9b5918
5e15674
e9b5918
 
5e15674
 
 
e1a016b
e9b5918
e1a016b
e9b5918
e1a016b
 
 
 
 
 
 
3ee8e25
e9b5918
 
5751ffd
e1a016b
7fecea0
 
 
 
 
e1a016b
 
4c12131
 
e9b5918
e1a016b
3ee8e25
71c32c3
5751ffd
e1a016b
 
 
 
 
 
 
7fecea0
 
 
e1a016b
3ee8e25
 
 
e9b5918
3ee8e25
 
e1a016b
5751ffd
5e15674
7fecea0
e1a016b
 
314e10e
7fecea0
 
e9b5918
 
e1a016b
7fecea0
e9b5918
 
 
7fecea0
e9b5918
 
 
 
 
7fecea0
e9b5918
3ee8e25
e9b5918
 
3ee8e25
e1a016b
 
e9b5918
 
 
e1a016b
e9b5918
 
5d87a8b
e9b5918
 
 
5751ffd
7fecea0
e1a016b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import spaces
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import os
import subprocess

from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random

import warnings
warnings.filterwarnings("ignore")

MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
LORA_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
LORA_FILENAME = "FusionX_LoRa/Wan2.1_I2V_14B_FusionX_LoRA.safetensors"

# --- Model Loading at Startup (Your Correct Method) ---
# This loads the entire model into GPU VRAM when the Space starts.
# This is correct for your H200 hardware to ensure fast inference.
image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float16)
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float16)
pipe = WanImageToVideoPipeline.from_pretrained(
    MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.to("cuda")

try:
    causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
    print("βœ… LoRA downloaded to:", causvid_path)
    pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
    pipe.set_adapters(["causvid_lora"], adapter_weights=[0.75])
    pipe.fuse_lora()
except Exception as e:
    print(f"❌ Error during LoRA loading: {e}")

# --- Constants ---
MOD_VALUE = 32
DEFAULT_H, DEFAULT_W = 640, 1024
MAX_AREA = DEFAULT_H * DEFAULT_W
SLIDER_MIN_H, SLIDER_MAX_H = 128, 1024
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1024
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS, MIN_FRAMES, MAX_FRAMES = 24, 8, 81
default_prompt = "make this image come alive, cinematic motion, smooth animation"
default_neg_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"

# This function correctly provides a static duration to the decorator at startup.
def get_duration(steps, duration_seconds):
    if steps > 4 and duration_seconds > 2: return 90
    if steps > 4 or duration_seconds > 2: return 75
    return 60

@spaces.GPU(duration=60) # Default duration, the get_duration logic inside the function is not effective for the decorator itself
def generate_video(input_image, prompt, height, width,
                   negative_prompt, duration_seconds,
                   guidance_scale, steps, seed, randomize_seed,
                   progress=gr.Progress(track_tqdm=True)):
    
    if input_image is None:
        raise gr.Error("Please upload an input image.")

    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
    
    # Using a robust frame calculation to prevent potential model errors
    raw_frames = int(round(duration_seconds * FIXED_FPS))
    num_frames = ((raw_frames - 1) // 4) * 4 + 1
    num_frames = np.clip(num_frames, MIN_FRAMES, MAX_FRAMES)
    
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
    resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS)

    with torch.inference_mode():
        frames = pipe(
            image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
            height=target_h, width=target_w, num_frames=num_frames,
            guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
            generator=torch.Generator(device="cuda").manual_seed(current_seed)
        ).frames[0]

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name
        # Using a more robust video exporter for better quality and compression
        import imageio
        writer = imageio.get_writer(video_path, fps=FIXED_FPS, codec='libx264',
                                   pixelformat='yuv420p', quality=8)
        for frame in frames:
            writer.append_data(np.array(frame))
        writer.close()

    return video_path, current_seed

with gr.Blocks() as demo:
    gr.Markdown("# Fast 4 steps Wan 2.1 I2V (14B) fusionx-lora")
    gr.Markdown("Note: The Space will restart after a period of inactivity, causing a one-time long load.")
    
    with gr.Row():
        with gr.Column():
            input_image_comp = gr.Image(type="pil", label="Input Image")
            prompt_comp = gr.Textbox(label="Prompt", value=default_prompt)
            duration_comp = gr.Slider(minimum=round(MIN_FRAMES/FIXED_FPS,1), maximum=round(MAX_FRAMES/FIXED_FPS,1), step=0.1, value=2, label="Duration (s)")
            with gr.Accordion("Advanced Settings", open=False):
                neg_prompt_comp = gr.Textbox(label="Negative Prompt", value=default_neg_prompt, lines=3)
                seed_comp = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
                rand_seed_comp = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Row():
                    height_comp = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H, label="Height")
                    width_comp = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W, label="Width")
                steps_comp = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Steps")
                guidance_comp = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="CFG Scale", visible=False)
            gen_button = gr.Button("Generate Video", variant="primary")
        with gr.Column():
            video_comp = gr.Video(label="Generated Video", autoplay=True, interactive=False)

    def handle_upload(img):
        if img is None: return gr.update(value=DEFAULT_H), gr.update(value=DEFAULT_W)
        try:
            w, h = img.size; a = h / w
            h_new = int(np.sqrt(MAX_AREA * a)); w_new = int(np.sqrt(MAX_AREA / a))
            h_final = max(MOD_VALUE, h_new // MOD_VALUE * MOD_VALUE)
            w_final = max(MOD_VALUE, w_new // MOD_VALUE * MOD_VALUE)
            return gr.update(value=h_final), gr.update(value=w_final)
        except Exception: return gr.update(value=DEFAULT_H), gr.update(value=DEFAULT_W)

    input_image_comp.upload(handle_upload, inputs=input_image_comp, outputs=[height_comp, width_comp])
    
    inputs = [input_image_comp, prompt_comp, height_comp, width_comp, neg_prompt_comp, duration_comp, guidance_comp, steps_comp, seed_comp, rand_seed_comp]
    outputs = [video_comp, seed_comp]
    gen_button.click(fn=generate_video, inputs=inputs, outputs=outputs)

if __name__ == "__main__":
    demo.queue().launch()