Spaces:
Runtime error
Runtime error
File size: 7,126 Bytes
5751ffd 7fecea0 71c32c3 1f97f51 7fecea0 4c12131 e9b5918 4c12131 efa8780 7fecea0 b29fa42 7fecea0 e1a016b 5751ffd e1a016b 5751ffd e1a016b 3ee8e25 5751ffd e9b5918 5d87a8b e9b5918 5e15674 e9b5918 5e15674 e1a016b e9b5918 e1a016b e9b5918 e1a016b 3ee8e25 e9b5918 5751ffd e1a016b 7fecea0 e1a016b 4c12131 e9b5918 e1a016b 3ee8e25 71c32c3 5751ffd e1a016b 7fecea0 e1a016b 3ee8e25 e9b5918 3ee8e25 e1a016b 5751ffd 5e15674 7fecea0 e1a016b 314e10e 7fecea0 e9b5918 e1a016b 7fecea0 e9b5918 7fecea0 e9b5918 7fecea0 e9b5918 3ee8e25 e9b5918 3ee8e25 e1a016b e9b5918 e1a016b e9b5918 5d87a8b e9b5918 5751ffd 7fecea0 e1a016b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import spaces
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import os
import subprocess
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random
import warnings
warnings.filterwarnings("ignore")
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
LORA_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
LORA_FILENAME = "FusionX_LoRa/Wan2.1_I2V_14B_FusionX_LoRA.safetensors"
# --- Model Loading at Startup (Your Correct Method) ---
# This loads the entire model into GPU VRAM when the Space starts.
# This is correct for your H200 hardware to ensure fast inference.
image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float16)
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float16)
pipe = WanImageToVideoPipeline.from_pretrained(
MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.to("cuda")
try:
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
print("β
LoRA downloaded to:", causvid_path)
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.75])
pipe.fuse_lora()
except Exception as e:
print(f"β Error during LoRA loading: {e}")
# --- Constants ---
MOD_VALUE = 32
DEFAULT_H, DEFAULT_W = 640, 1024
MAX_AREA = DEFAULT_H * DEFAULT_W
SLIDER_MIN_H, SLIDER_MAX_H = 128, 1024
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1024
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS, MIN_FRAMES, MAX_FRAMES = 24, 8, 81
default_prompt = "make this image come alive, cinematic motion, smooth animation"
default_neg_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"
# This function correctly provides a static duration to the decorator at startup.
def get_duration(steps, duration_seconds):
if steps > 4 and duration_seconds > 2: return 90
if steps > 4 or duration_seconds > 2: return 75
return 60
@spaces.GPU(duration=60) # Default duration, the get_duration logic inside the function is not effective for the decorator itself
def generate_video(input_image, prompt, height, width,
negative_prompt, duration_seconds,
guidance_scale, steps, seed, randomize_seed,
progress=gr.Progress(track_tqdm=True)):
if input_image is None:
raise gr.Error("Please upload an input image.")
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
# Using a robust frame calculation to prevent potential model errors
raw_frames = int(round(duration_seconds * FIXED_FPS))
num_frames = ((raw_frames - 1) // 4) * 4 + 1
num_frames = np.clip(num_frames, MIN_FRAMES, MAX_FRAMES)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS)
with torch.inference_mode():
frames = pipe(
image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
height=target_h, width=target_w, num_frames=num_frames,
guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
# Using a more robust video exporter for better quality and compression
import imageio
writer = imageio.get_writer(video_path, fps=FIXED_FPS, codec='libx264',
pixelformat='yuv420p', quality=8)
for frame in frames:
writer.append_data(np.array(frame))
writer.close()
return video_path, current_seed
with gr.Blocks() as demo:
gr.Markdown("# Fast 4 steps Wan 2.1 I2V (14B) fusionx-lora")
gr.Markdown("Note: The Space will restart after a period of inactivity, causing a one-time long load.")
with gr.Row():
with gr.Column():
input_image_comp = gr.Image(type="pil", label="Input Image")
prompt_comp = gr.Textbox(label="Prompt", value=default_prompt)
duration_comp = gr.Slider(minimum=round(MIN_FRAMES/FIXED_FPS,1), maximum=round(MAX_FRAMES/FIXED_FPS,1), step=0.1, value=2, label="Duration (s)")
with gr.Accordion("Advanced Settings", open=False):
neg_prompt_comp = gr.Textbox(label="Negative Prompt", value=default_neg_prompt, lines=3)
seed_comp = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
rand_seed_comp = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
height_comp = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H, label="Height")
width_comp = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W, label="Width")
steps_comp = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Steps")
guidance_comp = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="CFG Scale", visible=False)
gen_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_comp = gr.Video(label="Generated Video", autoplay=True, interactive=False)
def handle_upload(img):
if img is None: return gr.update(value=DEFAULT_H), gr.update(value=DEFAULT_W)
try:
w, h = img.size; a = h / w
h_new = int(np.sqrt(MAX_AREA * a)); w_new = int(np.sqrt(MAX_AREA / a))
h_final = max(MOD_VALUE, h_new // MOD_VALUE * MOD_VALUE)
w_final = max(MOD_VALUE, w_new // MOD_VALUE * MOD_VALUE)
return gr.update(value=h_final), gr.update(value=w_final)
except Exception: return gr.update(value=DEFAULT_H), gr.update(value=DEFAULT_W)
input_image_comp.upload(handle_upload, inputs=input_image_comp, outputs=[height_comp, width_comp])
inputs = [input_image_comp, prompt_comp, height_comp, width_comp, neg_prompt_comp, duration_comp, guidance_comp, steps_comp, seed_comp, rand_seed_comp]
outputs = [video_comp, seed_comp]
gen_button.click(fn=generate_video, inputs=inputs, outputs=outputs)
if __name__ == "__main__":
demo.queue().launch() |