File size: 7,111 Bytes
5751ffd
7fecea0
 
 
 
 
 
71c32c3
 
1f97f51
7fecea0
 
 
 
 
4c12131
e9b5918
4c12131
efa8780
7fecea0
b29fa42
7fecea0
3ee8e25
5751ffd
 
 
 
 
 
 
3ee8e25
e9b5918
5751ffd
 
 
 
 
 
 
e9b5918
5d87a8b
e9b5918
5e15674
e9b5918
 
5e15674
 
 
e9b5918
 
 
 
 
 
 
 
3ee8e25
e9b5918
 
5751ffd
3ee8e25
7fecea0
 
 
 
 
4c12131
 
e9b5918
5751ffd
3ee8e25
e9b5918
 
 
 
3ee8e25
 
71c32c3
5751ffd
 
e9b5918
3ee8e25
e9b5918
3ee8e25
 
 
 
 
 
e9b5918
 
5751ffd
e9b5918
3ee8e25
e9b5918
7fecea0
 
 
3ee8e25
 
 
e9b5918
3ee8e25
 
e9b5918
5751ffd
5e15674
3ee8e25
7fecea0
e9b5918
314e10e
7fecea0
 
e9b5918
 
 
7fecea0
e9b5918
 
 
7fecea0
e9b5918
 
 
 
 
7fecea0
e9b5918
 
3ee8e25
e9b5918
 
3ee8e25
 
e9b5918
 
 
 
 
 
 
 
 
 
5d87a8b
e9b5918
 
 
5751ffd
7fecea0
5751ffd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import spaces
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import os
import subprocess

from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random

import warnings
warnings.filterwarnings("ignore")

MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
LORA_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
LORA_FILENAME = "FusionX_LoRa/Wan2.1_I2V_14B_FusionX_LoRA.safetensors"

# --- Model Loading at Startup ---
image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float16)
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float16)
pipe = WanImageToVideoPipeline.from_pretrained(
    MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.enable_model_cpu_offload()

# LoRA Loading
try:
    causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
    print("βœ… LoRA downloaded to:", causvid_path)
    pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
    pipe.set_adapters(["causvid_lora"], adapter_weights=[0.75])
    pipe.fuse_lora()
except Exception as e:
    print(f"❌ Error during LoRA loading: {e}")

# --- Constants ---
MOD_VALUE = 32
DEFAULT_H, DEFAULT_W = 640, 1024
MAX_AREA = DEFAULT_H * DEFAULT_W
SLIDER_MIN_H, SLIDER_MAX_H = 128, 1024
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1024
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS, MIN_FRAMES, MAX_FRAMES = 24, 8, 240
default_prompt = "make this image come alive, cinematic motion, smooth animation"
default_neg_prompt = "static, blurry, watermark, text, signature, ugly, deformed"

# --- Main Generation Function ---
# THE FIX: Set a generous, FIXED duration for the decorator. 180 seconds (3 minutes)
# should be enough for the longest video generation.
@spaces.GPU(duration=180)
def generate_video(input_image, prompt, height, width,
                   negative_prompt, duration_seconds,
                   guidance_scale, steps, seed, randomize_seed,
                   progress=gr.Progress(track_tqdm=True)):

    if input_image is None:
        raise gr.Error("Please upload an input image.")

    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
    raw_frames = int(round(duration_seconds * FIXED_FPS))
    num_frames = ((raw_frames - 1) // 4) * 4 + 1
    num_frames = np.clip(num_frames, MIN_FRAMES, MAX_FRAMES)

    if num_frames > 120 and max(target_h, target_w) > 768:
        scale = 768 / max(target_h, target_w)
        target_h = max(MOD_VALUE, int(target_h * scale) // MOD_VALUE * MOD_VALUE)
        target_w = max(MOD_VALUE, int(target_w * scale) // MOD_VALUE * MOD_VALUE)
        gr.Info(f"Reduced resolution to {target_w}x{target_h} for long video.")

    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
    resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS)

    try:
        torch.cuda.empty_cache()
        with torch.inference_mode(), torch.autocast("cuda", dtype=torch.float16):
            frames = pipe(
                image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
                height=target_h, width=target_w, num_frames=num_frames,
                guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
                generator=torch.Generator(device="cuda").manual_seed(current_seed),
                return_dict=True
            ).frames[0]
    except torch.cuda.OutOfMemoryError as e:
        raise gr.Error("Out of GPU memory. Try reducing duration or resolution.")
    except Exception as e:
        raise gr.Error(f"Generation failed: {e}")
    finally:
        torch.cuda.empty_cache()

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name
        import imageio
        writer = imageio.get_writer(video_path, fps=FIXED_FPS, codec='libx264',
                                   pixelformat='yuv420p', quality=8)
        for frame in frames:
            writer.append_data(np.array(frame))
        writer.close()
    
    return video_path, current_seed

# --- Gradio UI ---
with gr.Blocks() as demo:
    gr.Markdown("# Wan 2.1 I2V FusionX-LoRA")
    
    with gr.Row():
        with gr.Column():
            input_image_comp = gr.Image(type="pil", label="Input Image")
            prompt_comp = gr.Textbox(label="Prompt", value=default_prompt)
            duration_comp = gr.Slider(minimum=round(MIN_FRAMES/FIXED_FPS, 1), maximum=round(MAX_FRAMES/FIXED_FPS, 1), step=0.1, value=2, label="Duration (s)")
            with gr.Accordion("Advanced Settings", open=False):
                neg_prompt_comp = gr.Textbox(label="Negative Prompt", value=default_neg_prompt, lines=3)
                seed_comp = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
                rand_seed_comp = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Row():
                    height_comp = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H, label="Height")
                    width_comp = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W, label="Width")
                steps_comp = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Steps")
                guidance_comp = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="CFG Scale", visible=False)
            gen_button = gr.Button("Generate Video", variant="primary")
        with gr.Column():
            video_comp = gr.Video(label="Generated Video", autoplay=True, interactive=False)
            gr.Markdown("### Tips:\n- For long videos (>5s), consider lower resolutions.\n- 4-8 steps is often optimal.")

    def handle_upload(img):
        if img is None: return gr.update(value=DEFAULT_H), gr.update(value=DEFAULT_W)
        try:
            w, h = img.size
            a = h / w
            h_new = int(np.sqrt(MAX_AREA * a))
            w_new = int(np.sqrt(MAX_AREA / a))
            h_final = max(MOD_VALUE, h_new // MOD_VALUE * MOD_VALUE)
            w_final = max(MOD_VALUE, w_new // MOD_VALUE * MOD_VALUE)
            return gr.update(value=h_final), gr.update(value=w_final)
        except Exception:
            return gr.update(value=DEFAULT_H), gr.update(value=DEFAULT_W)

    input_image_comp.upload(handle_upload, inputs=input_image_comp, outputs=[height_comp, width_comp])
    
    inputs = [input_image_comp, prompt_comp, height_comp, width_comp, neg_prompt_comp, duration_comp, guidance_comp, steps_comp, seed_comp, rand_seed_comp]
    outputs = [video_comp, seed_comp]
    gen_button.click(fn=generate_video, inputs=inputs, outputs=outputs)

if __name__ == "__main__":
    demo.queue(max_size=3).launch()