Spaces:
Runtime error
Runtime error
File size: 7,111 Bytes
5751ffd 7fecea0 71c32c3 1f97f51 7fecea0 4c12131 e9b5918 4c12131 efa8780 7fecea0 b29fa42 7fecea0 3ee8e25 5751ffd 3ee8e25 e9b5918 5751ffd e9b5918 5d87a8b e9b5918 5e15674 e9b5918 5e15674 e9b5918 3ee8e25 e9b5918 5751ffd 3ee8e25 7fecea0 4c12131 e9b5918 5751ffd 3ee8e25 e9b5918 3ee8e25 71c32c3 5751ffd e9b5918 3ee8e25 e9b5918 3ee8e25 e9b5918 5751ffd e9b5918 3ee8e25 e9b5918 7fecea0 3ee8e25 e9b5918 3ee8e25 e9b5918 5751ffd 5e15674 3ee8e25 7fecea0 e9b5918 314e10e 7fecea0 e9b5918 7fecea0 e9b5918 7fecea0 e9b5918 7fecea0 e9b5918 3ee8e25 e9b5918 3ee8e25 e9b5918 5d87a8b e9b5918 5751ffd 7fecea0 5751ffd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import spaces
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import os
import subprocess
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random
import warnings
warnings.filterwarnings("ignore")
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
LORA_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
LORA_FILENAME = "FusionX_LoRa/Wan2.1_I2V_14B_FusionX_LoRA.safetensors"
# --- Model Loading at Startup ---
image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float16)
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float16)
pipe = WanImageToVideoPipeline.from_pretrained(
MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.enable_model_cpu_offload()
# LoRA Loading
try:
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
print("β
LoRA downloaded to:", causvid_path)
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.75])
pipe.fuse_lora()
except Exception as e:
print(f"β Error during LoRA loading: {e}")
# --- Constants ---
MOD_VALUE = 32
DEFAULT_H, DEFAULT_W = 640, 1024
MAX_AREA = DEFAULT_H * DEFAULT_W
SLIDER_MIN_H, SLIDER_MAX_H = 128, 1024
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1024
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS, MIN_FRAMES, MAX_FRAMES = 24, 8, 240
default_prompt = "make this image come alive, cinematic motion, smooth animation"
default_neg_prompt = "static, blurry, watermark, text, signature, ugly, deformed"
# --- Main Generation Function ---
# THE FIX: Set a generous, FIXED duration for the decorator. 180 seconds (3 minutes)
# should be enough for the longest video generation.
@spaces.GPU(duration=180)
def generate_video(input_image, prompt, height, width,
negative_prompt, duration_seconds,
guidance_scale, steps, seed, randomize_seed,
progress=gr.Progress(track_tqdm=True)):
if input_image is None:
raise gr.Error("Please upload an input image.")
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
raw_frames = int(round(duration_seconds * FIXED_FPS))
num_frames = ((raw_frames - 1) // 4) * 4 + 1
num_frames = np.clip(num_frames, MIN_FRAMES, MAX_FRAMES)
if num_frames > 120 and max(target_h, target_w) > 768:
scale = 768 / max(target_h, target_w)
target_h = max(MOD_VALUE, int(target_h * scale) // MOD_VALUE * MOD_VALUE)
target_w = max(MOD_VALUE, int(target_w * scale) // MOD_VALUE * MOD_VALUE)
gr.Info(f"Reduced resolution to {target_w}x{target_h} for long video.")
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS)
try:
torch.cuda.empty_cache()
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.float16):
frames = pipe(
image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
height=target_h, width=target_w, num_frames=num_frames,
guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed),
return_dict=True
).frames[0]
except torch.cuda.OutOfMemoryError as e:
raise gr.Error("Out of GPU memory. Try reducing duration or resolution.")
except Exception as e:
raise gr.Error(f"Generation failed: {e}")
finally:
torch.cuda.empty_cache()
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
import imageio
writer = imageio.get_writer(video_path, fps=FIXED_FPS, codec='libx264',
pixelformat='yuv420p', quality=8)
for frame in frames:
writer.append_data(np.array(frame))
writer.close()
return video_path, current_seed
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("# Wan 2.1 I2V FusionX-LoRA")
with gr.Row():
with gr.Column():
input_image_comp = gr.Image(type="pil", label="Input Image")
prompt_comp = gr.Textbox(label="Prompt", value=default_prompt)
duration_comp = gr.Slider(minimum=round(MIN_FRAMES/FIXED_FPS, 1), maximum=round(MAX_FRAMES/FIXED_FPS, 1), step=0.1, value=2, label="Duration (s)")
with gr.Accordion("Advanced Settings", open=False):
neg_prompt_comp = gr.Textbox(label="Negative Prompt", value=default_neg_prompt, lines=3)
seed_comp = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
rand_seed_comp = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
height_comp = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H, label="Height")
width_comp = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W, label="Width")
steps_comp = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Steps")
guidance_comp = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="CFG Scale", visible=False)
gen_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_comp = gr.Video(label="Generated Video", autoplay=True, interactive=False)
gr.Markdown("### Tips:\n- For long videos (>5s), consider lower resolutions.\n- 4-8 steps is often optimal.")
def handle_upload(img):
if img is None: return gr.update(value=DEFAULT_H), gr.update(value=DEFAULT_W)
try:
w, h = img.size
a = h / w
h_new = int(np.sqrt(MAX_AREA * a))
w_new = int(np.sqrt(MAX_AREA / a))
h_final = max(MOD_VALUE, h_new // MOD_VALUE * MOD_VALUE)
w_final = max(MOD_VALUE, w_new // MOD_VALUE * MOD_VALUE)
return gr.update(value=h_final), gr.update(value=w_final)
except Exception:
return gr.update(value=DEFAULT_H), gr.update(value=DEFAULT_W)
input_image_comp.upload(handle_upload, inputs=input_image_comp, outputs=[height_comp, width_comp])
inputs = [input_image_comp, prompt_comp, height_comp, width_comp, neg_prompt_comp, duration_comp, guidance_comp, steps_comp, seed_comp, rand_seed_comp]
outputs = [video_comp, seed_comp]
gen_button.click(fn=generate_video, inputs=inputs, outputs=outputs)
if __name__ == "__main__":
demo.queue(max_size=3).launch() |