Spaces:
Runtime error
Runtime error
import spaces | |
import torch | |
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler | |
from diffusers.utils import export_to_video | |
from transformers import CLIPVisionModel | |
import gradio as gr | |
import tempfile | |
import os | |
import subprocess | |
from huggingface_hub import hf_hub_download | |
import numpy as np | |
from PIL import Image | |
import random | |
import warnings | |
warnings.filterwarnings("ignore") | |
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers" | |
LORA_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX" | |
LORA_FILENAME = "FusionX_LoRa/Wan2.1_I2V_14B_FusionX_LoRA.safetensors" | |
# --- Model Loading at Startup (Your Correct Method) --- | |
# This loads the entire model into GPU VRAM when the Space starts. | |
# This is correct for your H200 hardware to ensure fast inference. | |
image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float16) | |
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float16) | |
pipe = WanImageToVideoPipeline.from_pretrained( | |
MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16 | |
) | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0) | |
pipe.to("cuda") | |
try: | |
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME) | |
print("β LoRA downloaded to:", causvid_path) | |
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora") | |
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.75]) | |
pipe.fuse_lora() | |
except Exception as e: | |
print(f"β Error during LoRA loading: {e}") | |
# --- Constants --- | |
MOD_VALUE = 32 | |
DEFAULT_H, DEFAULT_W = 640, 1024 | |
MAX_AREA = DEFAULT_H * DEFAULT_W | |
SLIDER_MIN_H, SLIDER_MAX_H = 128, 1024 | |
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1024 | |
MAX_SEED = np.iinfo(np.int32).max | |
FIXED_FPS, MIN_FRAMES, MAX_FRAMES = 24, 8, 81 | |
default_prompt = "make this image come alive, cinematic motion, smooth animation" | |
default_neg_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature" | |
# This function correctly provides a static duration to the decorator at startup. | |
def get_duration(steps, duration_seconds): | |
if steps > 4 and duration_seconds > 2: return 90 | |
if steps > 4 or duration_seconds > 2: return 75 | |
return 60 | |
# Default duration, the get_duration logic inside the function is not effective for the decorator itself | |
def generate_video(input_image, prompt, height, width, | |
negative_prompt, duration_seconds, | |
guidance_scale, steps, seed, randomize_seed, | |
progress=gr.Progress(track_tqdm=True)): | |
if input_image is None: | |
raise gr.Error("Please upload an input image.") | |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE) | |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE) | |
# Using a robust frame calculation to prevent potential model errors | |
raw_frames = int(round(duration_seconds * FIXED_FPS)) | |
num_frames = ((raw_frames - 1) // 4) * 4 + 1 | |
num_frames = np.clip(num_frames, MIN_FRAMES, MAX_FRAMES) | |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) | |
resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS) | |
with torch.inference_mode(): | |
frames = pipe( | |
image=resized_image, prompt=prompt, negative_prompt=negative_prompt, | |
height=target_h, width=target_w, num_frames=num_frames, | |
guidance_scale=float(guidance_scale), num_inference_steps=int(steps), | |
generator=torch.Generator(device="cuda").manual_seed(current_seed) | |
).frames[0] | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: | |
video_path = tmpfile.name | |
# Using a more robust video exporter for better quality and compression | |
import imageio | |
writer = imageio.get_writer(video_path, fps=FIXED_FPS, codec='libx264', | |
pixelformat='yuv420p', quality=8) | |
for frame in frames: | |
writer.append_data(np.array(frame)) | |
writer.close() | |
return video_path, current_seed | |
with gr.Blocks() as demo: | |
gr.Markdown("# Fast 4 steps Wan 2.1 I2V (14B) fusionx-lora") | |
gr.Markdown("Note: The Space will restart after a period of inactivity, causing a one-time long load.") | |
with gr.Row(): | |
with gr.Column(): | |
input_image_comp = gr.Image(type="pil", label="Input Image") | |
prompt_comp = gr.Textbox(label="Prompt", value=default_prompt) | |
duration_comp = gr.Slider(minimum=round(MIN_FRAMES/FIXED_FPS,1), maximum=round(MAX_FRAMES/FIXED_FPS,1), step=0.1, value=2, label="Duration (s)") | |
with gr.Accordion("Advanced Settings", open=False): | |
neg_prompt_comp = gr.Textbox(label="Negative Prompt", value=default_neg_prompt, lines=3) | |
seed_comp = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True) | |
rand_seed_comp = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
height_comp = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H, label="Height") | |
width_comp = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W, label="Width") | |
steps_comp = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Steps") | |
guidance_comp = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="CFG Scale", visible=False) | |
gen_button = gr.Button("Generate Video", variant="primary") | |
with gr.Column(): | |
video_comp = gr.Video(label="Generated Video", autoplay=True, interactive=False) | |
def handle_upload(img): | |
if img is None: return gr.update(value=DEFAULT_H), gr.update(value=DEFAULT_W) | |
try: | |
w, h = img.size; a = h / w | |
h_new = int(np.sqrt(MAX_AREA * a)); w_new = int(np.sqrt(MAX_AREA / a)) | |
h_final = max(MOD_VALUE, h_new // MOD_VALUE * MOD_VALUE) | |
w_final = max(MOD_VALUE, w_new // MOD_VALUE * MOD_VALUE) | |
return gr.update(value=h_final), gr.update(value=w_final) | |
except Exception: return gr.update(value=DEFAULT_H), gr.update(value=DEFAULT_W) | |
input_image_comp.upload(handle_upload, inputs=input_image_comp, outputs=[height_comp, width_comp]) | |
inputs = [input_image_comp, prompt_comp, height_comp, width_comp, neg_prompt_comp, duration_comp, guidance_comp, steps_comp, seed_comp, rand_seed_comp] | |
outputs = [video_comp, seed_comp] | |
gen_button.click(fn=generate_video, inputs=inputs, outputs=outputs) | |
if __name__ == "__main__": | |
demo.queue().launch() |