Spaces:
Runtime error
Runtime error
File size: 8,498 Bytes
a71f5d3 4fafed4 b7b1936 ef9ea85 b7b1936 bf95b09 b7b1936 bf95b09 b7b1936 bf95b09 a71f5d3 b7b1936 bf95b09 9738dce b7b1936 a71f5d3 9738dce a71f5d3 d4bbfb5 735e830 86e6a95 ef9ea85 b7b1936 ef9ea85 a20297c ef9ea85 bf95b09 ef9ea85 b7b1936 ef9ea85 b872418 ef9ea85 b872418 b7b1936 a20297c b872418 ef9ea85 b7b1936 e6ca5c2 a20297c ef9ea85 a20297c 9738dce b7b1936 b872418 ef9ea85 b7b1936 ef9ea85 9738dce b7b1936 a71f5d3 d4bbfb5 a71f5d3 ef9ea85 a71f5d3 ef9ea85 a71f5d3 ef9ea85 a71f5d3 9738dce ef9ea85 e5c747c ef9ea85 a71f5d3 ef9ea85 b7b1936 a71f5d3 6b9434e a71f5d3 ef9ea85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import gradio as gr
import numpy as np
import torch
from diffusers import StableDiffusionPipeline
from peft import PeftModel, LoraConfig
import os
def get_lora_sd_pipeline(
ckpt_dir='./lora_man_animestyle',
base_model_name_or_path=None,
dtype=torch.float16,
adapter_name="default"
):
unet_sub_dir = os.path.join(ckpt_dir, "unet")
text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
config = LoraConfig.from_pretrained(text_encoder_sub_dir)
base_model_name_or_path = config.base_model_name_or_path
if base_model_name_or_path is None:
raise ValueError("Please specify the base model name or path")
pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype)
before_params = pipe.unet.parameters()
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
pipe.unet.set_adapter(adapter_name)
after_params = pipe.unet.parameters()
print("Parameters changed:", any(torch.any(b != a) for b, a in zip(before_params, after_params)))
if os.path.exists(text_encoder_sub_dir):
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name)
if dtype in (torch.float16, torch.bfloat16):
pipe.unet.half()
pipe.text_encoder.half()
return pipe
def process_prompt(prompt, tokenizer, text_encoder, max_length=77):
tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"]
chunks = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)]
with torch.no_grad():
embeds = [text_encoder(chunk.to(text_encoder.device))[0] for chunk in chunks]
return torch.cat(embeds, dim=1)
def align_embeddings(prompt_embeds, negative_prompt_embeds):
max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])
return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \
torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
pipe_default = get_lora_sd_pipeline(ckpt_dir='./lora_man_animestyle', base_model_name_or_path=model_id_default, dtype=torch_dtype).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(
prompt,
negative_prompt,
width=512,
height=512,
num_inference_steps=20,
model_id='stable-diffusion-v1-5/stable-diffusion-v1-5',
seed=4,
guidance_scale=7.5,
lora_scale=0.5,
progress=gr.Progress(track_tqdm=True)
):
generator = torch.Generator(device).manual_seed(seed)
if model_id != model_id_default:
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
prompt_embeds = process_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
negative_prompt_embeds = process_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
else:
pipe = pipe_default
prompt_embeds = process_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
negative_prompt_embeds = process_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
print(f"LoRA adapter loaded: {pipe.unet.active_adapters}")
print(f"LoRA scale applied: {lora_scale}")
pipe.fuse_lora(lora_scale=lora_scale)
params = {
'prompt_embeds': prompt_embeds,
'negative_prompt_embeds': negative_prompt_embeds,
'guidance_scale': guidance_scale,
'num_inference_steps': num_inference_steps,
'width': width,
'height': height,
'generator': generator,
}
return pipe(**params).images[0]
examples = [
"Young man in anime style. The image is of high sharpness and resolution. A handsome, thoughtful man. The man is depicted in the foreground, close-up or middle plan. The background is blurry, not sharp. The play of light and shadow is visible on the face and clothes."
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
"An astronaut riding a green horse.",
"A delicious ceviche cheesecake slice.",
"A futuristic sports car is located on the surface of Mars. Stars, planets, mountains and craters are visible.",
]
examples_negative = [
"blurred details, low resolution, poor image of a man's face, poor quality, artifacts, black and white image"
"blurry details, low resolution, poorly defined edges",
"bad face, bad quality, artifacts, low-res, black and white",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
available_models = [
"stable-diffusion-v1-5/stable-diffusion-v1-5",
"SG161222/Realistic_Vision_V3.0_VAE",
"CompVis/stable-diffusion-v1-4",
"stabilityai/sdxl-turbo",
"runwayml/stable-diffusion-v1-5",
"sd-legacy/stable-diffusion-v1-5",
"prompthero/openjourney",
"stabilityai/stable-diffusion-3-medium-diffusers",
"stabilityai/stable-diffusion-3.5-large",
"stabilityai/stable-diffusion-3.5-large-turbo",
]
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio Template from V. Gorsky")
with gr.Row():
model_id = gr.Textbox(
label="Model",
max_lines=1,
placeholder="Enter model id like 'stable-diffusion-v1-5/stable-diffusion-v1-5'",
value=model_id_default
)
prompt = gr.Textbox(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
with gr.Row():
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.5,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.5,
)
with gr.Row():
seed = gr.Number(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=4,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
gr.Examples(examples=examples, inputs=[prompt])
gr.Examples(examples=examples_negative, inputs=[negative_prompt])
run_button = gr.Button("Run", scale=1, variant="primary")
result = gr.Image(label="Result", show_label=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
width,
height,
num_inference_steps,
model_id,
seed,
guidance_scale,
lora_scale,
],
outputs=[result],
)
if __name__ == "__main__":
demo.launch()
|