File size: 6,987 Bytes
a71f5d3
 
 
4fafed4
b7b1936
ef9ea85
b7b1936
 
ef9ea85
b7b1936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef9ea85
b7b1936
 
ef9ea85
a71f5d3
 
 
 
 
b7b1936
 
 
 
 
ef9ea85
e6ca5c2
ef9ea85
b7b1936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a71f5d3
 
 
 
 
 
 
 
735e830
 
ef9ea85
 
b7b1936
ef9ea85
 
 
 
 
b7b1936
 
ef9ea85
b872418
 
 
 
ef9ea85
 
b872418
 
 
 
b7b1936
 
e6ca5c2
 
 
 
 
 
b7b1936
b872418
ef9ea85
b7b1936
e6ca5c2
 
 
 
ef9ea85
 
 
 
 
 
 
 
 
 
b7b1936
b872418
ef9ea85
b7b1936
ef9ea85
 
 
 
 
b7b1936
a71f5d3
ef9ea85
a71f5d3
 
 
 
 
 
ef9ea85
a71f5d3
ef9ea85
 
a71f5d3
 
 
 
 
ef9ea85
a71f5d3
 
ef9ea85
e5c747c
ef9ea85
a71f5d3
 
 
 
 
 
 
 
 
ef9ea85
 
 
b7b1936
a71f5d3
6b9434e
a71f5d3
 
 
 
ef9ea85
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import gradio as gr
import numpy as np
import torch
from diffusers import StableDiffusionPipeline
from peft import PeftModel, LoraConfig
import os

def get_lora_sd_pipeline(
    ckpt_dir='./lora_logos', 
    base_model_name_or_path=None, 
    dtype=torch.float16, 
    adapter_name="default"
    ):

    unet_sub_dir = os.path.join(ckpt_dir, "unet")
    text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
    
    if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
        config = LoraConfig.from_pretrained(text_encoder_sub_dir)
        base_model_name_or_path = config.base_model_name_or_path
    
    if base_model_name_or_path is None:
        raise ValueError("Please specify the base model name or path")
    
    pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype)
    before_params = pipe.unet.parameters()
    pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
    pipe.unet.set_adapter(adapter_name)
    after_params = pipe.unet.parameters()
    print("Parameters changed:", any(torch.any(b != a) for b, a in zip(before_params, after_params)))
    
    if os.path.exists(text_encoder_sub_dir):
        pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name)
    
    if dtype in (torch.float16, torch.bfloat16):
        pipe.unet.half()
        pipe.text_encoder.half()
    
    return pipe

def process_prompt(prompt, tokenizer, text_encoder, max_length=77):
    tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"]
    chunks = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)]
    
    with torch.no_grad():
        embeds = [text_encoder(chunk.to(text_encoder.device))[0] for chunk in chunks]
    
    return torch.cat(embeds, dim=1)

def align_embeddings(prompt_embeds, negative_prompt_embeds):
    max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])
    return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \
           torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id_default = "CompVis/stable-diffusion-v1-4"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

pipe_default = get_lora_sd_pipeline(ckpt_dir='./lora_logos', base_model_name_or_path=model_id_default, dtype=torch_dtype).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def infer(
    prompt, 
    negative_prompt, 
    width=512, 
    height=512, 
    num_inference_steps=20, 
    model_id='CompVis/stable-diffusion-v1-4', 
    seed=42, 
    guidance_scale=7.0, 
    lora_scale=0.5,
    progress=gr.Progress(track_tqdm=True)
    ):
    
    generator = torch.Generator(device).manual_seed(seed)
    
    if model_id != model_id_default:
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
        prompt_embeds = process_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
        negative_prompt_embeds = process_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
        prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
    else:
        pipe = pipe_default
        prompt_embeds = process_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
        negative_prompt_embeds = process_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
        prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
        print(f"LoRA adapter loaded: {pipe.unet.active_adapters}")
        print(f"LoRA scale applied: {lora_scale}")
        pipe.fuse_lora(lora_scale=lora_scale)
    
    params = {
        'prompt_embeds': prompt_embeds,
        'negative_prompt_embeds': negative_prompt_embeds,
        'guidance_scale': guidance_scale,
        'num_inference_steps': num_inference_steps,
        'width': width,
        'height': height,
        'generator': generator,
    }
    
    return pipe(**params).images[0]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # DEMO Text-to-Image")
        
        with gr.Row():
            model_id = gr.Textbox(
                label="Model ID",
                max_lines=1,
                placeholder="Enter model id like 'CompVis/stable-diffusion-v1-4'",
                value=model_id_default
            )

        prompt = gr.Textbox(
            label="Prompt",
            max_lines=1,
            placeholder="Enter your prompt",
        )

        negative_prompt = gr.Textbox(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
        )

        with gr.Row():
            seed = gr.Number(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )

        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance scale",
                minimum=0.0,
                maximum=10.0,
                step=0.1,
                value=7.0,
            )

        with gr.Row():
            lora_scale = gr.Slider(
                label="LoRA scale",
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=0.5,
            )

        with gr.Row():
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=1,
                maximum=50,
                step=1,
                value=20,
            )

        with gr.Accordion("Optional Settings", open=False):
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
            
            with gr.Row():
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )

        run_button = gr.Button("Run", scale=1, variant="primary")
        result = gr.Image(label="Result", show_label=False)
    
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            width,
            height,
            num_inference_steps,
            model_id,
            seed,
            guidance_scale,
            lora_scale,
        ],
        outputs=[result],
    )

if __name__ == "__main__":
    demo.launch()