Lifeinhockey's picture
Update app.py
2bcb9f1 verified
raw
history blame
8.88 kB
import os
import gradio as gr
import numpy as np
import random
import torch
from diffusers import (
DiffusionPipeline,
StableDiffusionPipeline
)
from peft import PeftModel, LoraConfig
def get_lora_sd_pipeline(
ckpt_dir='./lora_man_animestyle',
base_model_name_or_path=None,
dtype=torch.float16,
adapter_name="default"
):
unet_sub_dir = os.path.join(ckpt_dir, "unet")
text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
config = LoraConfig.from_pretrained(text_encoder_sub_dir)
base_model_name_or_path = config.base_model_name_or_path
if base_model_name_or_path is None:
raise ValueError("Please specify the base model name or path")
pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype)
before_params = pipe.unet.parameters()
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
pipe.unet.set_adapter(adapter_name)
after_params = pipe.unet.parameters()
print("Parameters changed:", any(torch.any(b != a) for b, a in zip(before_params, after_params)))
if os.path.exists(text_encoder_sub_dir):
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name)
if dtype in (torch.float16, torch.bfloat16):
pipe.unet.half()
pipe.text_encoder.half()
return pipe
def process_prompt(prompt, tokenizer, text_encoder, max_length=77):
tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"]
chunks = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)]
with torch.no_grad():
embeds = [text_encoder(chunk.to(text_encoder.device))[0] for chunk in chunks]
return torch.cat(embeds, dim=1)
def align_embeddings(prompt_embeds, negative_prompt_embeds):
max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])
return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \
torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
pipe_default = get_lora_sd_pipeline(ckpt_dir='./lora_man_animestyle', base_model_name_or_path=model_id_default, dtype=torch_dtype).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(
prompt,
negative_prompt,
width=512,
height=512,
num_inference_steps=20,
model_id="stable-diffusion-v1-5/stable-diffusion-v1-5",
seed=4,
guidance_scale=7.5,
lora_scale=0.5,
progress=gr.Progress(track_tqdm=True)
):
generator = torch.Generator(device).manual_seed(seed)
if model_id != model_id_default:
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
prompt_embeds = process_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
negative_prompt_embeds = process_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
else:
pipe = pipe_default
prompt_embeds = process_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
negative_prompt_embeds = process_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
print(f"LoRA adapter loaded: {pipe.unet.active_adapters}")
print(f"LoRA scale applied: {lora_scale}")
pipe.fuse_lora(lora_scale=lora_scale)
params = {
'prompt_embeds': prompt_embeds,
'negative_prompt_embeds': negative_prompt_embeds,
'guidance_scale': guidance_scale,
'num_inference_steps': num_inference_steps,
'width': width,
'height': height,
'generator': generator,
}
return pipe(**params).images[0]
examples = [
"Young man in anime style. The image is of high sharpness and resolution. A handsome, thoughtful man. The man is depicted in the foreground, close-up or middle plan. The background is blurry, not sharp. The play of light and shadow is visible on the face and clothes."
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
"An astronaut riding a green horse.",
"A delicious ceviche cheesecake slice.",
"A futuristic sports car is located on the surface of Mars. Stars, planets, mountains and craters are visible.",
]
examples_negative = [
"blurred details, low resolution, poor image of a man's face, poor quality, artifacts, black and white image"
"blurry details, low resolution, poorly defined edges",
"bad face, bad quality, artifacts, low-res, black and white",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
available_models = [
"stable-diffusion-v1-5/stable-diffusion-v1-5",
"SG161222/Realistic_Vision_V3.0_VAE",
"CompVis/stable-diffusion-v1-4",
"stabilityai/sdxl-turbo",
"runwayml/stable-diffusion-v1-5",
"sd-legacy/stable-diffusion-v1-5",
"prompthero/openjourney",
"stabilityai/stable-diffusion-3-medium-diffusers",
"stabilityai/stable-diffusion-3.5-large",
"stabilityai/stable-diffusion-3.5-large-turbo",
]
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio Template from V. Gorsky")
with gr.Row():
model_id = gr.Dropdown(
label="Model Selection",
choices=available_models,
value="stable-diffusion-v1-5/stable-diffusion-v1-5",
interactive=True
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
with gr.Row():
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.5,
)
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.5, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=30, # Replace with defaults that work for your model
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
gr.Examples(examples=examples, inputs=[prompt])
gr.Examples(examples=examples_negative, inputs=[negative_prompt])
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
model_id,
prompt,
negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()