Lifeinhockey commited on
Commit
b65dcf6
·
verified ·
1 Parent(s): 6d0fa70

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -16
app.py CHANGED
@@ -84,22 +84,12 @@ def preprocess_image(image, target_width, target_height, resize_to_224=False):
84
  image = torch.from_numpy(image).to(device)
85
  return image
86
 
87
- # def get_depth_map(image, depth_estimator):
88
- # image = depth_estimator(image)["depth"]
89
- # image = np.array(image)
90
- # image = image[:, :, None]
91
- # image = np.concatenate([image, image, image], axis=2)
92
- # detected_map = torch.from_numpy(image).float() / 255.0
93
- # depth_map = detected_map.permute(2, 0, 1)
94
- # return depth_map
95
-
96
  def get_depth_map(image, depth_estimator):
97
  # Преобразуем изображение в PIL, если это необходимо
98
  if isinstance(image, np.ndarray):
99
  image = Image.fromarray(image)
100
  elif isinstance(image, torch.Tensor):
101
  image = Image.fromarray(image.cpu().numpy())
102
-
103
  # Получаем карту глубины
104
  depth_map = depth_estimator(image)["depth"]
105
  depth_map = np.array(depth_map)
@@ -411,7 +401,7 @@ def infer(
411
  pipe_controlnet = StableDiffusionControlNetPipeline.from_pretrained(
412
  "stable-diffusion-v1-5/stable-diffusion-v1-5",
413
  controlnet=controlnet,
414
- torch_dtype=torch.float16,
415
  use_safetensors=True
416
  ).to(device)
417
 
@@ -440,10 +430,6 @@ def infer(
440
 
441
  print('control_mode = ', control_mode)
442
 
443
- # # Преобразуем изображения
444
- # cn_source_image = preprocess_image(cn_source_image, width, height)
445
- # control_image = preprocess_image(control_image, width, height)
446
-
447
  depth_estimator = pipeline("depth-estimation")
448
  depth_map = get_depth_map(control_image, depth_estimator).unsqueeze(0).half().to(device)
449
 
@@ -455,7 +441,7 @@ def infer(
455
  pipe_controlnet = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
456
  "stable-diffusion-v1-5/stable-diffusion-v1-5",
457
  controlnet=controlnet,
458
- torch_dtype=torch.float16,
459
  use_safetensors=True
460
  ).to(device)
461
 
 
84
  image = torch.from_numpy(image).to(device)
85
  return image
86
 
 
 
 
 
 
 
 
 
 
87
  def get_depth_map(image, depth_estimator):
88
  # Преобразуем изображение в PIL, если это необходимо
89
  if isinstance(image, np.ndarray):
90
  image = Image.fromarray(image)
91
  elif isinstance(image, torch.Tensor):
92
  image = Image.fromarray(image.cpu().numpy())
 
93
  # Получаем карту глубины
94
  depth_map = depth_estimator(image)["depth"]
95
  depth_map = np.array(depth_map)
 
401
  pipe_controlnet = StableDiffusionControlNetPipeline.from_pretrained(
402
  "stable-diffusion-v1-5/stable-diffusion-v1-5",
403
  controlnet=controlnet,
404
+ torch_dtype=torch_dtype,
405
  use_safetensors=True
406
  ).to(device)
407
 
 
430
 
431
  print('control_mode = ', control_mode)
432
 
 
 
 
 
433
  depth_estimator = pipeline("depth-estimation")
434
  depth_map = get_depth_map(control_image, depth_estimator).unsqueeze(0).half().to(device)
435
 
 
441
  pipe_controlnet = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
442
  "stable-diffusion-v1-5/stable-diffusion-v1-5",
443
  controlnet=controlnet,
444
+ torch_dtype=torch_dtype,
445
  use_safetensors=True
446
  ).to(device)
447