Spaces:
Running
on
Zero
Running
on
Zero
from abc import ABC, abstractmethod | |
from typing import Tuple | |
import torch | |
from diffusers.configuration_utils import ConfigMixin | |
from einops import rearrange | |
from torch import Tensor | |
class Patchifier(ConfigMixin, ABC): | |
def __init__(self, patch_size: int): | |
super().__init__() | |
self._patch_size = (1, patch_size, patch_size) | |
def patchify(self, latents: Tensor) -> Tuple[Tensor, Tensor]: | |
raise NotImplementedError("Patchify method not implemented") | |
def unpatchify( | |
self, | |
latents: Tensor, | |
output_height: int, | |
output_width: int, | |
out_channels: int, | |
) -> Tuple[Tensor, Tensor]: | |
pass | |
def patch_size(self): | |
return self._patch_size | |
def get_latent_coords( | |
self, latent_num_frames, latent_height, latent_width, batch_size, device | |
): | |
""" | |
Return a tensor of shape [batch_size, 3, num_patches] containing the | |
top-left corner latent coordinates of each latent patch. | |
The tensor is repeated for each batch element. | |
""" | |
latent_sample_coords = torch.meshgrid( | |
torch.arange(0, latent_num_frames, self._patch_size[0], device=device), | |
torch.arange(0, latent_height, self._patch_size[1], device=device), | |
torch.arange(0, latent_width, self._patch_size[2], device=device), | |
) | |
latent_sample_coords = torch.stack(latent_sample_coords, dim=0) | |
latent_coords = latent_sample_coords.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1) | |
latent_coords = rearrange( | |
latent_coords, "b c f h w -> b c (f h w)", b=batch_size | |
) | |
return latent_coords | |
class SymmetricPatchifier(Patchifier): | |
def patchify(self, latents: Tensor) -> Tuple[Tensor, Tensor]: | |
b, _, f, h, w = latents.shape | |
latent_coords = self.get_latent_coords(f, h, w, b, latents.device) | |
latents = rearrange( | |
latents, | |
"b c (f p1) (h p2) (w p3) -> b (f h w) (c p1 p2 p3)", | |
p1=self._patch_size[0], | |
p2=self._patch_size[1], | |
p3=self._patch_size[2], | |
) | |
return latents, latent_coords | |
def unpatchify( | |
self, | |
latents: Tensor, | |
output_height: int, | |
output_width: int, | |
out_channels: int, | |
) -> Tuple[Tensor, Tensor]: | |
output_height = output_height // self._patch_size[1] | |
output_width = output_width // self._patch_size[2] | |
latents = rearrange( | |
latents, | |
"b (f h w) (c p q) -> b c f (h p) (w q)", | |
h=output_height, | |
w=output_width, | |
p=self._patch_size[1], | |
q=self._patch_size[2], | |
) | |
return latents | |