linoyts's picture
linoyts HF Staff
Upload 35 files
833590f verified
from abc import ABC, abstractmethod
from typing import Tuple
import torch
from diffusers.configuration_utils import ConfigMixin
from einops import rearrange
from torch import Tensor
class Patchifier(ConfigMixin, ABC):
def __init__(self, patch_size: int):
super().__init__()
self._patch_size = (1, patch_size, patch_size)
@abstractmethod
def patchify(self, latents: Tensor) -> Tuple[Tensor, Tensor]:
raise NotImplementedError("Patchify method not implemented")
@abstractmethod
def unpatchify(
self,
latents: Tensor,
output_height: int,
output_width: int,
out_channels: int,
) -> Tuple[Tensor, Tensor]:
pass
@property
def patch_size(self):
return self._patch_size
def get_latent_coords(
self, latent_num_frames, latent_height, latent_width, batch_size, device
):
"""
Return a tensor of shape [batch_size, 3, num_patches] containing the
top-left corner latent coordinates of each latent patch.
The tensor is repeated for each batch element.
"""
latent_sample_coords = torch.meshgrid(
torch.arange(0, latent_num_frames, self._patch_size[0], device=device),
torch.arange(0, latent_height, self._patch_size[1], device=device),
torch.arange(0, latent_width, self._patch_size[2], device=device),
)
latent_sample_coords = torch.stack(latent_sample_coords, dim=0)
latent_coords = latent_sample_coords.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)
latent_coords = rearrange(
latent_coords, "b c f h w -> b c (f h w)", b=batch_size
)
return latent_coords
class SymmetricPatchifier(Patchifier):
def patchify(self, latents: Tensor) -> Tuple[Tensor, Tensor]:
b, _, f, h, w = latents.shape
latent_coords = self.get_latent_coords(f, h, w, b, latents.device)
latents = rearrange(
latents,
"b c (f p1) (h p2) (w p3) -> b (f h w) (c p1 p2 p3)",
p1=self._patch_size[0],
p2=self._patch_size[1],
p3=self._patch_size[2],
)
return latents, latent_coords
def unpatchify(
self,
latents: Tensor,
output_height: int,
output_width: int,
out_channels: int,
) -> Tuple[Tensor, Tensor]:
output_height = output_height // self._patch_size[1]
output_width = output_width // self._patch_size[2]
latents = rearrange(
latents,
"b (f h w) (c p q) -> b c f (h p) (w q)",
h=output_height,
w=output_width,
p=self._patch_size[1],
q=self._patch_size[2],
)
return latents