Spaces:
Running
on
Zero
Running
on
Zero
# Adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py | |
import copy | |
import inspect | |
import math | |
import re | |
from contextlib import nullcontext | |
from dataclasses import dataclass | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.models import AutoencoderKL | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
from diffusers.schedulers import DPMSolverMultistepScheduler | |
from diffusers.utils import deprecate, logging | |
from diffusers.utils.torch_utils import randn_tensor | |
from einops import rearrange | |
from transformers import ( | |
T5EncoderModel, | |
T5Tokenizer, | |
AutoModelForCausalLM, | |
AutoProcessor, | |
AutoTokenizer, | |
) | |
from ltx_video.models.autoencoders.causal_video_autoencoder import ( | |
CausalVideoAutoencoder, | |
) | |
from ltx_video.models.autoencoders.vae_encode import ( | |
get_vae_size_scale_factor, | |
latent_to_pixel_coords, | |
vae_decode, | |
vae_encode, | |
) | |
from ltx_video.models.transformers.symmetric_patchifier import Patchifier | |
from ltx_video.models.transformers.transformer3d import Transformer3DModel | |
from ltx_video.schedulers.rf import TimestepShifter | |
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy | |
from ltx_video.utils.prompt_enhance_utils import generate_cinematic_prompt | |
from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler | |
from ltx_video.models.autoencoders.vae_encode import ( | |
un_normalize_latents, | |
normalize_latents, | |
) | |
try: | |
import torch_xla.distributed.spmd as xs | |
except ImportError: | |
xs = None | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
ASPECT_RATIO_1024_BIN = { | |
"0.25": [512.0, 2048.0], | |
"0.28": [512.0, 1856.0], | |
"0.32": [576.0, 1792.0], | |
"0.33": [576.0, 1728.0], | |
"0.35": [576.0, 1664.0], | |
"0.4": [640.0, 1600.0], | |
"0.42": [640.0, 1536.0], | |
"0.48": [704.0, 1472.0], | |
"0.5": [704.0, 1408.0], | |
"0.52": [704.0, 1344.0], | |
"0.57": [768.0, 1344.0], | |
"0.6": [768.0, 1280.0], | |
"0.68": [832.0, 1216.0], | |
"0.72": [832.0, 1152.0], | |
"0.78": [896.0, 1152.0], | |
"0.82": [896.0, 1088.0], | |
"0.88": [960.0, 1088.0], | |
"0.94": [960.0, 1024.0], | |
"1.0": [1024.0, 1024.0], | |
"1.07": [1024.0, 960.0], | |
"1.13": [1088.0, 960.0], | |
"1.21": [1088.0, 896.0], | |
"1.29": [1152.0, 896.0], | |
"1.38": [1152.0, 832.0], | |
"1.46": [1216.0, 832.0], | |
"1.67": [1280.0, 768.0], | |
"1.75": [1344.0, 768.0], | |
"2.0": [1408.0, 704.0], | |
"2.09": [1472.0, 704.0], | |
"2.4": [1536.0, 640.0], | |
"2.5": [1600.0, 640.0], | |
"3.0": [1728.0, 576.0], | |
"4.0": [2048.0, 512.0], | |
} | |
ASPECT_RATIO_512_BIN = { | |
"0.25": [256.0, 1024.0], | |
"0.28": [256.0, 928.0], | |
"0.32": [288.0, 896.0], | |
"0.33": [288.0, 864.0], | |
"0.35": [288.0, 832.0], | |
"0.4": [320.0, 800.0], | |
"0.42": [320.0, 768.0], | |
"0.48": [352.0, 736.0], | |
"0.5": [352.0, 704.0], | |
"0.52": [352.0, 672.0], | |
"0.57": [384.0, 672.0], | |
"0.6": [384.0, 640.0], | |
"0.68": [416.0, 608.0], | |
"0.72": [416.0, 576.0], | |
"0.78": [448.0, 576.0], | |
"0.82": [448.0, 544.0], | |
"0.88": [480.0, 544.0], | |
"0.94": [480.0, 512.0], | |
"1.0": [512.0, 512.0], | |
"1.07": [512.0, 480.0], | |
"1.13": [544.0, 480.0], | |
"1.21": [544.0, 448.0], | |
"1.29": [576.0, 448.0], | |
"1.38": [576.0, 416.0], | |
"1.46": [608.0, 416.0], | |
"1.67": [640.0, 384.0], | |
"1.75": [672.0, 384.0], | |
"2.0": [704.0, 352.0], | |
"2.09": [736.0, 352.0], | |
"2.4": [768.0, 320.0], | |
"2.5": [800.0, 320.0], | |
"3.0": [864.0, 288.0], | |
"4.0": [1024.0, 256.0], | |
} | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
def retrieve_timesteps( | |
scheduler, | |
num_inference_steps: Optional[int] = None, | |
device: Optional[Union[str, torch.device]] = None, | |
timesteps: Optional[List[int]] = None, | |
skip_initial_inference_steps: int = 0, | |
skip_final_inference_steps: int = 0, | |
**kwargs, | |
): | |
""" | |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
Args: | |
scheduler (`SchedulerMixin`): | |
The scheduler to get timesteps from. | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. If used, | |
`timesteps` must be `None`. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default | |
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` | |
must be `None`. | |
max_timestep ('float', *optional*, defaults to 1.0): | |
The initial noising level for image-to-image/video-to-video. The list if timestamps will be | |
truncated to start with a timestamp greater or equal to this. | |
Returns: | |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
second element is the number of inference steps. | |
""" | |
if timesteps is not None: | |
accepts_timesteps = "timesteps" in set( | |
inspect.signature(scheduler.set_timesteps).parameters.keys() | |
) | |
if not accepts_timesteps: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" timestep schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
else: | |
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
if ( | |
skip_initial_inference_steps < 0 | |
or skip_final_inference_steps < 0 | |
or skip_initial_inference_steps + skip_final_inference_steps | |
>= num_inference_steps | |
): | |
raise ValueError( | |
"invalid skip inference step values: must be non-negative and the sum of skip_initial_inference_steps and skip_final_inference_steps must be less than the number of inference steps" | |
) | |
timesteps = timesteps[ | |
skip_initial_inference_steps : len(timesteps) - skip_final_inference_steps | |
] | |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
num_inference_steps = len(timesteps) | |
return timesteps, num_inference_steps | |
class ConditioningItem: | |
""" | |
Defines a single frame-conditioning item - a single frame or a sequence of frames. | |
Attributes: | |
media_item (torch.Tensor): shape=(b, 3, f, h, w). The media item to condition on. | |
media_frame_number (int): The start-frame number of the media item in the generated video. | |
conditioning_strength (float): The strength of the conditioning (1.0 = full conditioning). | |
media_x (Optional[int]): Optional left x coordinate of the media item in the generated frame. | |
media_y (Optional[int]): Optional top y coordinate of the media item in the generated frame. | |
""" | |
media_item: torch.Tensor | |
media_frame_number: int | |
conditioning_strength: float | |
media_x: Optional[int] = None | |
media_y: Optional[int] = None | |
class LTXVideoPipeline(DiffusionPipeline): | |
r""" | |
Pipeline for text-to-image generation using LTX-Video. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`T5EncoderModel`]): | |
Frozen text-encoder. This uses | |
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the | |
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. | |
tokenizer (`T5Tokenizer`): | |
Tokenizer of class | |
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). | |
transformer ([`Transformer2DModel`]): | |
A text conditioned `Transformer2DModel` to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
""" | |
bad_punct_regex = re.compile( | |
r"[" | |
+ "#®•©™&@·º½¾¿¡§~" | |
+ r"\)" | |
+ r"\(" | |
+ r"\]" | |
+ r"\[" | |
+ r"\}" | |
+ r"\{" | |
+ r"\|" | |
+ "\\" | |
+ r"\/" | |
+ r"\*" | |
+ r"]{1,}" | |
) # noqa | |
_optional_components = [ | |
"tokenizer", | |
"text_encoder", | |
"prompt_enhancer_image_caption_model", | |
"prompt_enhancer_image_caption_processor", | |
"prompt_enhancer_llm_model", | |
"prompt_enhancer_llm_tokenizer", | |
] | |
model_cpu_offload_seq = "prompt_enhancer_image_caption_model->prompt_enhancer_llm_model->text_encoder->transformer->vae" | |
def __init__( | |
self, | |
tokenizer: T5Tokenizer, | |
text_encoder: T5EncoderModel, | |
vae: AutoencoderKL, | |
transformer: Transformer3DModel, | |
scheduler: DPMSolverMultistepScheduler, | |
patchifier: Patchifier, | |
prompt_enhancer_image_caption_model: AutoModelForCausalLM, | |
prompt_enhancer_image_caption_processor: AutoProcessor, | |
prompt_enhancer_llm_model: AutoModelForCausalLM, | |
prompt_enhancer_llm_tokenizer: AutoTokenizer, | |
allowed_inference_steps: Optional[List[float]] = None, | |
): | |
super().__init__() | |
self.register_modules( | |
tokenizer=tokenizer, | |
text_encoder=text_encoder, | |
vae=vae, | |
transformer=transformer, | |
scheduler=scheduler, | |
patchifier=patchifier, | |
prompt_enhancer_image_caption_model=prompt_enhancer_image_caption_model, | |
prompt_enhancer_image_caption_processor=prompt_enhancer_image_caption_processor, | |
prompt_enhancer_llm_model=prompt_enhancer_llm_model, | |
prompt_enhancer_llm_tokenizer=prompt_enhancer_llm_tokenizer, | |
) | |
self.video_scale_factor, self.vae_scale_factor, _ = get_vae_size_scale_factor( | |
self.vae | |
) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
self.allowed_inference_steps = allowed_inference_steps | |
def mask_text_embeddings(self, emb, mask): | |
if emb.shape[0] == 1: | |
keep_index = mask.sum().item() | |
return emb[:, :, :keep_index, :], keep_index | |
else: | |
masked_feature = emb * mask[:, None, :, None] | |
return masked_feature, emb.shape[2] | |
# Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt | |
def encode_prompt( | |
self, | |
prompt: Union[str, List[str]], | |
do_classifier_free_guidance: bool = True, | |
negative_prompt: str = "", | |
num_images_per_prompt: int = 1, | |
device: Optional[torch.device] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
prompt_attention_mask: Optional[torch.FloatTensor] = None, | |
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, | |
text_encoder_max_tokens: int = 256, | |
**kwargs, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` | |
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For | |
This should be "". | |
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): | |
whether to use classifier free guidance or not | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
number of images that should be generated per prompt | |
device: (`torch.device`, *optional*): | |
torch device to place the resulting embeddings on | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. | |
""" | |
if "mask_feature" in kwargs: | |
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." | |
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False) | |
if device is None: | |
device = self._execution_device | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
# See Section 3.1. of the paper. | |
max_length = ( | |
text_encoder_max_tokens # TPU supports only lengths multiple of 128 | |
) | |
if prompt_embeds is None: | |
assert ( | |
self.text_encoder is not None | |
), "You should provide either prompt_embeds or self.text_encoder should not be None," | |
text_enc_device = next(self.text_encoder.parameters()).device | |
prompt = self._text_preprocessing(prompt) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer( | |
prompt, padding="longest", return_tensors="pt" | |
).input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[ | |
-1 | |
] and not torch.equal(text_input_ids, untruncated_ids): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {max_length} tokens: {removed_text}" | |
) | |
prompt_attention_mask = text_inputs.attention_mask | |
prompt_attention_mask = prompt_attention_mask.to(text_enc_device) | |
prompt_attention_mask = prompt_attention_mask.to(device) | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(text_enc_device), attention_mask=prompt_attention_mask | |
) | |
prompt_embeds = prompt_embeds[0] | |
if self.text_encoder is not None: | |
dtype = self.text_encoder.dtype | |
elif self.transformer is not None: | |
dtype = self.transformer.dtype | |
else: | |
dtype = None | |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view( | |
bs_embed * num_images_per_prompt, seq_len, -1 | |
) | |
prompt_attention_mask = prompt_attention_mask.repeat(1, num_images_per_prompt) | |
prompt_attention_mask = prompt_attention_mask.view( | |
bs_embed * num_images_per_prompt, -1 | |
) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens = self._text_preprocessing(negative_prompt) | |
uncond_tokens = uncond_tokens * batch_size | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_attention_mask=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
negative_prompt_attention_mask = uncond_input.attention_mask | |
negative_prompt_attention_mask = negative_prompt_attention_mask.to( | |
text_enc_device | |
) | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(text_enc_device), | |
attention_mask=negative_prompt_attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to( | |
dtype=dtype, device=device | |
) | |
negative_prompt_embeds = negative_prompt_embeds.repeat( | |
1, num_images_per_prompt, 1 | |
) | |
negative_prompt_embeds = negative_prompt_embeds.view( | |
batch_size * num_images_per_prompt, seq_len, -1 | |
) | |
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat( | |
1, num_images_per_prompt | |
) | |
negative_prompt_attention_mask = negative_prompt_attention_mask.view( | |
bs_embed * num_images_per_prompt, -1 | |
) | |
else: | |
negative_prompt_embeds = None | |
negative_prompt_attention_mask = None | |
return ( | |
prompt_embeds, | |
prompt_attention_mask, | |
negative_prompt_embeds, | |
negative_prompt_attention_mask, | |
) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set( | |
inspect.signature(self.scheduler.step).parameters.keys() | |
) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set( | |
inspect.signature(self.scheduler.step).parameters.keys() | |
) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
height, | |
width, | |
negative_prompt, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
prompt_attention_mask=None, | |
negative_prompt_attention_mask=None, | |
enhance_prompt=False, | |
): | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError( | |
f"`height` and `width` have to be divisible by 8 but are {height} and {width}." | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and ( | |
not isinstance(prompt, str) and not isinstance(prompt, list) | |
): | |
raise ValueError( | |
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" | |
) | |
if prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and prompt_attention_mask is None: | |
raise ValueError( | |
"Must provide `prompt_attention_mask` when specifying `prompt_embeds`." | |
) | |
if ( | |
negative_prompt_embeds is not None | |
and negative_prompt_attention_mask is None | |
): | |
raise ValueError( | |
"Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: | |
raise ValueError( | |
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" | |
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" | |
f" {negative_prompt_attention_mask.shape}." | |
) | |
if enhance_prompt: | |
assert ( | |
self.prompt_enhancer_image_caption_model is not None | |
), "Image caption model must be initialized if enhance_prompt is True" | |
assert ( | |
self.prompt_enhancer_image_caption_processor is not None | |
), "Image caption processor must be initialized if enhance_prompt is True" | |
assert ( | |
self.prompt_enhancer_llm_model is not None | |
), "Text prompt enhancer model must be initialized if enhance_prompt is True" | |
assert ( | |
self.prompt_enhancer_llm_tokenizer is not None | |
), "Text prompt enhancer tokenizer must be initialized if enhance_prompt is True" | |
def _text_preprocessing(self, text): | |
if not isinstance(text, (tuple, list)): | |
text = [text] | |
def process(text: str): | |
text = text.strip() | |
return text | |
return [process(t) for t in text] | |
def add_noise_to_image_conditioning_latents( | |
t: float, | |
init_latents: torch.Tensor, | |
latents: torch.Tensor, | |
noise_scale: float, | |
conditioning_mask: torch.Tensor, | |
generator, | |
eps=1e-6, | |
): | |
""" | |
Add timestep-dependent noise to the hard-conditioning latents. | |
This helps with motion continuity, especially when conditioned on a single frame. | |
""" | |
noise = randn_tensor( | |
latents.shape, | |
generator=generator, | |
device=latents.device, | |
dtype=latents.dtype, | |
) | |
# Add noise only to hard-conditioning latents (conditioning_mask = 1.0) | |
need_to_noise = (conditioning_mask > 1.0 - eps).unsqueeze(-1) | |
noised_latents = init_latents + noise_scale * noise * (t**2) | |
latents = torch.where(need_to_noise, noised_latents, latents) | |
return latents | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
def prepare_latents( | |
self, | |
latents: torch.Tensor | None, | |
media_items: torch.Tensor | None, | |
timestep: float, | |
latent_shape: torch.Size | Tuple[Any, ...], | |
dtype: torch.dtype, | |
device: torch.device, | |
generator: torch.Generator | List[torch.Generator], | |
vae_per_channel_normalize: bool = True, | |
): | |
""" | |
Prepare the initial latent tensor to be denoised. | |
The latents are either pure noise or a noised version of the encoded media items. | |
Args: | |
latents (`torch.FloatTensor` or `None`): | |
The latents to use (provided by the user) or `None` to create new latents. | |
media_items (`torch.FloatTensor` or `None`): | |
An image or video to be updated using img2img or vid2vid. The media item is encoded and noised. | |
timestep (`float`): | |
The timestep to noise the encoded media_items to. | |
latent_shape (`torch.Size`): | |
The target latent shape. | |
dtype (`torch.dtype`): | |
The target dtype. | |
device (`torch.device`): | |
The target device. | |
generator (`torch.Generator` or `List[torch.Generator]`): | |
Generator(s) to be used for the noising process. | |
vae_per_channel_normalize ('bool'): | |
When encoding the media_items, whether to normalize the latents per-channel. | |
Returns: | |
`torch.FloatTensor`: The latents to be used for the denoising process. This is a tensor of shape | |
(batch_size, num_channels, height, width). | |
""" | |
if isinstance(generator, list) and len(generator) != latent_shape[0]: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {latent_shape[0]}. Make sure the batch size matches the length of the generators." | |
) | |
# Initialize the latents with the given latents or encoded media item, if provided | |
assert ( | |
latents is None or media_items is None | |
), "Cannot provide both latents and media_items. Please provide only one of the two." | |
assert ( | |
latents is None and media_items is None or timestep < 1.0 | |
), "Input media_item or latents are provided, but they will be replaced with noise." | |
if media_items is not None: | |
latents = vae_encode( | |
media_items.to(dtype=self.vae.dtype, device=self.vae.device), | |
self.vae, | |
vae_per_channel_normalize=vae_per_channel_normalize, | |
) | |
if latents is not None: | |
assert ( | |
latents.shape == latent_shape | |
), f"Latents have to be of shape {latent_shape} but are {latents.shape}." | |
latents = latents.to(device=device, dtype=dtype) | |
# For backward compatibility, generate in the "patchified" shape and rearrange | |
b, c, f, h, w = latent_shape | |
noise = randn_tensor( | |
(b, f * h * w, c), generator=generator, device=device, dtype=dtype | |
) | |
noise = rearrange(noise, "b (f h w) c -> b c f h w", f=f, h=h, w=w) | |
# scale the initial noise by the standard deviation required by the scheduler | |
noise = noise * self.scheduler.init_noise_sigma | |
if latents is None: | |
latents = noise | |
else: | |
# Noise the latents to the required (first) timestep | |
latents = timestep * noise + (1 - timestep) * latents | |
return latents | |
def classify_height_width_bin( | |
height: int, width: int, ratios: dict | |
) -> Tuple[int, int]: | |
"""Returns binned height and width.""" | |
ar = float(height / width) | |
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar)) | |
default_hw = ratios[closest_ratio] | |
return int(default_hw[0]), int(default_hw[1]) | |
def resize_and_crop_tensor( | |
samples: torch.Tensor, new_width: int, new_height: int | |
) -> torch.Tensor: | |
n_frames, orig_height, orig_width = samples.shape[-3:] | |
# Check if resizing is needed | |
if orig_height != new_height or orig_width != new_width: | |
ratio = max(new_height / orig_height, new_width / orig_width) | |
resized_width = int(orig_width * ratio) | |
resized_height = int(orig_height * ratio) | |
# Resize | |
samples = LTXVideoPipeline.resize_tensor( | |
samples, resized_height, resized_width | |
) | |
# Center Crop | |
start_x = (resized_width - new_width) // 2 | |
end_x = start_x + new_width | |
start_y = (resized_height - new_height) // 2 | |
end_y = start_y + new_height | |
samples = samples[..., start_y:end_y, start_x:end_x] | |
return samples | |
def resize_tensor(media_items, height, width): | |
n_frames = media_items.shape[2] | |
if media_items.shape[-2:] != (height, width): | |
media_items = rearrange(media_items, "b c n h w -> (b n) c h w") | |
media_items = F.interpolate( | |
media_items, | |
size=(height, width), | |
mode="bilinear", | |
align_corners=False, | |
) | |
media_items = rearrange(media_items, "(b n) c h w -> b c n h w", n=n_frames) | |
return media_items | |
def __call__( | |
self, | |
height: int, | |
width: int, | |
num_frames: int, | |
frame_rate: float, | |
prompt: Union[str, List[str]] = None, | |
negative_prompt: str = "", | |
num_inference_steps: int = 20, | |
skip_initial_inference_steps: int = 0, | |
skip_final_inference_steps: int = 0, | |
timesteps: List[int] = None, | |
guidance_scale: Union[float, List[float]] = 4.5, | |
cfg_star_rescale: bool = False, | |
skip_layer_strategy: Optional[SkipLayerStrategy] = None, | |
skip_block_list: Optional[Union[List[List[int]], List[int]]] = None, | |
stg_scale: Union[float, List[float]] = 1.0, | |
rescaling_scale: Union[float, List[float]] = 0.7, | |
guidance_timesteps: Optional[List[int]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
prompt_attention_mask: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
conditioning_items: Optional[List[ConditioningItem]] = None, | |
decode_timestep: Union[List[float], float] = 0.0, | |
decode_noise_scale: Optional[List[float]] = None, | |
mixed_precision: bool = False, | |
offload_to_cpu: bool = False, | |
enhance_prompt: bool = False, | |
text_encoder_max_tokens: int = 256, | |
stochastic_sampling: bool = False, | |
media_items: Optional[torch.Tensor] = None, | |
**kwargs, | |
) -> Union[ImagePipelineOutput, Tuple]: | |
""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
num_inference_steps (`int`, *optional*, defaults to 100): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. If `timesteps` is provided, this parameter is ignored. | |
skip_initial_inference_steps (`int`, *optional*, defaults to 0): | |
The number of initial timesteps to skip. After calculating the timesteps, this number of timesteps will | |
be removed from the beginning of the timesteps list. Meaning the highest-timesteps values will not run. | |
skip_final_inference_steps (`int`, *optional*, defaults to 0): | |
The number of final timesteps to skip. After calculating the timesteps, this number of timesteps will | |
be removed from the end of the timesteps list. Meaning the lowest-timesteps values will not run. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` | |
timesteps are used. Must be in descending order. | |
guidance_scale (`float`, *optional*, defaults to 4.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
cfg_star_rescale (`bool`, *optional*, defaults to `False`): | |
If set to `True`, applies the CFG star rescale. Scales the negative prediction according to dot | |
product between positive and negative. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size): | |
The width in pixels of the generated image. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. This negative prompt should be "". If not | |
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. | |
negative_prompt_attention_mask (`torch.FloatTensor`, *optional*): | |
Pre-generated attention mask for negative text embeddings. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
use_resolution_binning (`bool` defaults to `True`): | |
If set to `True`, the requested height and width are first mapped to the closest resolutions using | |
`ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to | |
the requested resolution. Useful for generating non-square images. | |
enhance_prompt (`bool`, *optional*, defaults to `False`): | |
If set to `True`, the prompt is enhanced using a LLM model. | |
text_encoder_max_tokens (`int`, *optional*, defaults to `256`): | |
The maximum number of tokens to use for the text encoder. | |
stochastic_sampling (`bool`, *optional*, defaults to `False`): | |
If set to `True`, the sampling is stochastic. If set to `False`, the sampling is deterministic. | |
media_items ('torch.Tensor', *optional*): | |
The input media item used for image-to-image / video-to-video. | |
Examples: | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is | |
returned where the first element is a list with the generated images | |
""" | |
if "mask_feature" in kwargs: | |
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." | |
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False) | |
is_video = kwargs.get("is_video", False) | |
self.check_inputs( | |
prompt, | |
height, | |
width, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
prompt_attention_mask, | |
negative_prompt_attention_mask, | |
) | |
# 2. Default height and width to transformer | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
self.video_scale_factor = self.video_scale_factor if is_video else 1 | |
vae_per_channel_normalize = kwargs.get("vae_per_channel_normalize", True) | |
image_cond_noise_scale = kwargs.get("image_cond_noise_scale", 0.0) | |
latent_height = height // self.vae_scale_factor | |
latent_width = width // self.vae_scale_factor | |
latent_num_frames = num_frames // self.video_scale_factor | |
if isinstance(self.vae, CausalVideoAutoencoder) and is_video: | |
latent_num_frames += 1 | |
latent_shape = ( | |
batch_size * num_images_per_prompt, | |
self.transformer.config.in_channels, | |
latent_num_frames, | |
latent_height, | |
latent_width, | |
) | |
# Prepare the list of denoising time-steps | |
retrieve_timesteps_kwargs = {} | |
if isinstance(self.scheduler, TimestepShifter): | |
retrieve_timesteps_kwargs["samples_shape"] = latent_shape | |
assert ( | |
skip_initial_inference_steps == 0 | |
or latents is not None | |
or media_items is not None | |
), ( | |
f"skip_initial_inference_steps ({skip_initial_inference_steps}) is used for image-to-image/video-to-video - " | |
"media_item or latents should be provided." | |
) | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, | |
num_inference_steps, | |
device, | |
timesteps, | |
skip_initial_inference_steps=skip_initial_inference_steps, | |
skip_final_inference_steps=skip_final_inference_steps, | |
**retrieve_timesteps_kwargs, | |
) | |
if self.allowed_inference_steps is not None: | |
for timestep in [round(x, 4) for x in timesteps.tolist()]: | |
assert ( | |
timestep in self.allowed_inference_steps | |
), f"Invalid inference timestep {timestep}. Allowed timesteps are {self.allowed_inference_steps}." | |
if guidance_timesteps: | |
guidance_mapping = [] | |
for timestep in timesteps: | |
indices = [ | |
i for i, val in enumerate(guidance_timesteps) if val <= timestep | |
] | |
# assert len(indices) > 0, f"No guidance timestep found for {timestep}" | |
guidance_mapping.append( | |
indices[0] if len(indices) > 0 else (len(guidance_timesteps) - 1) | |
) | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
if not isinstance(guidance_scale, List): | |
guidance_scale = [guidance_scale] * len(timesteps) | |
else: | |
guidance_scale = [ | |
guidance_scale[guidance_mapping[i]] for i in range(len(timesteps)) | |
] | |
# For simplicity, we are using a constant num_conds for all timesteps, so we need to zero | |
# out cases where the guidance scale should not be applied. | |
guidance_scale = [x if x > 1.0 else 0.0 for x in guidance_scale] | |
if not isinstance(stg_scale, List): | |
stg_scale = [stg_scale] * len(timesteps) | |
else: | |
stg_scale = [stg_scale[guidance_mapping[i]] for i in range(len(timesteps))] | |
if not isinstance(rescaling_scale, List): | |
rescaling_scale = [rescaling_scale] * len(timesteps) | |
else: | |
rescaling_scale = [ | |
rescaling_scale[guidance_mapping[i]] for i in range(len(timesteps)) | |
] | |
do_classifier_free_guidance = any(x > 1.0 for x in guidance_scale) | |
do_spatio_temporal_guidance = any(x > 0.0 for x in stg_scale) | |
do_rescaling = any(x != 1.0 for x in rescaling_scale) | |
num_conds = 1 | |
if do_classifier_free_guidance: | |
num_conds += 1 | |
if do_spatio_temporal_guidance: | |
num_conds += 1 | |
# Normalize skip_block_list to always be None or a list of lists matching timesteps | |
if skip_block_list is not None: | |
# Convert single list to list of lists if needed | |
if len(skip_block_list) == 0 or not isinstance(skip_block_list[0], list): | |
skip_block_list = [skip_block_list] * len(timesteps) | |
else: | |
new_skip_block_list = [] | |
for i, timestep in enumerate(timesteps): | |
new_skip_block_list.append(skip_block_list[guidance_mapping[i]]) | |
skip_block_list = new_skip_block_list | |
# Prepare skip layer masks | |
skip_layer_masks: Optional[List[torch.Tensor]] = None | |
if do_spatio_temporal_guidance: | |
if skip_block_list is not None: | |
skip_layer_masks = [ | |
self.transformer.create_skip_layer_mask( | |
batch_size, num_conds, num_conds - 1, skip_blocks | |
) | |
for skip_blocks in skip_block_list | |
] | |
if enhance_prompt: | |
self.prompt_enhancer_image_caption_model = ( | |
self.prompt_enhancer_image_caption_model.to(self._execution_device) | |
) | |
self.prompt_enhancer_llm_model = self.prompt_enhancer_llm_model.to( | |
self._execution_device | |
) | |
prompt = generate_cinematic_prompt( | |
self.prompt_enhancer_image_caption_model, | |
self.prompt_enhancer_image_caption_processor, | |
self.prompt_enhancer_llm_model, | |
self.prompt_enhancer_llm_tokenizer, | |
prompt, | |
conditioning_items, | |
max_new_tokens=text_encoder_max_tokens, | |
) | |
# 3. Encode input prompt | |
if self.text_encoder is not None: | |
self.text_encoder = self.text_encoder.to(self._execution_device) | |
( | |
prompt_embeds, | |
prompt_attention_mask, | |
negative_prompt_embeds, | |
negative_prompt_attention_mask, | |
) = self.encode_prompt( | |
prompt, | |
do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
prompt_attention_mask=prompt_attention_mask, | |
negative_prompt_attention_mask=negative_prompt_attention_mask, | |
text_encoder_max_tokens=text_encoder_max_tokens, | |
) | |
if offload_to_cpu and self.text_encoder is not None: | |
self.text_encoder = self.text_encoder.cpu() | |
self.transformer = self.transformer.to(self._execution_device) | |
prompt_embeds_batch = prompt_embeds | |
prompt_attention_mask_batch = prompt_attention_mask | |
if do_classifier_free_guidance: | |
prompt_embeds_batch = torch.cat( | |
[negative_prompt_embeds, prompt_embeds], dim=0 | |
) | |
prompt_attention_mask_batch = torch.cat( | |
[negative_prompt_attention_mask, prompt_attention_mask], dim=0 | |
) | |
if do_spatio_temporal_guidance: | |
prompt_embeds_batch = torch.cat([prompt_embeds_batch, prompt_embeds], dim=0) | |
prompt_attention_mask_batch = torch.cat( | |
[ | |
prompt_attention_mask_batch, | |
prompt_attention_mask, | |
], | |
dim=0, | |
) | |
# 4. Prepare the initial latents using the provided media and conditioning items | |
# Prepare the initial latents tensor, shape = (b, c, f, h, w) | |
latents = self.prepare_latents( | |
latents=latents, | |
media_items=media_items, | |
timestep=timesteps[0], | |
latent_shape=latent_shape, | |
dtype=prompt_embeds_batch.dtype, | |
device=device, | |
generator=generator, | |
vae_per_channel_normalize=vae_per_channel_normalize, | |
) | |
# Update the latents with the conditioning items and patchify them into (b, n, c) | |
latents, pixel_coords, conditioning_mask, num_cond_latents = ( | |
self.prepare_conditioning( | |
conditioning_items=conditioning_items, | |
init_latents=latents, | |
num_frames=num_frames, | |
height=height, | |
width=width, | |
vae_per_channel_normalize=vae_per_channel_normalize, | |
generator=generator, | |
) | |
) | |
init_latents = latents.clone() # Used for image_cond_noise_update | |
pixel_coords = torch.cat([pixel_coords] * num_conds) | |
orig_conditioning_mask = conditioning_mask | |
if conditioning_mask is not None and is_video: | |
assert num_images_per_prompt == 1 | |
conditioning_mask = torch.cat([conditioning_mask] * num_conds) | |
fractional_coords = pixel_coords.to(torch.float32) | |
fractional_coords[:, 0] = fractional_coords[:, 0] * (1.0 / frame_rate) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7. Denoising loop | |
num_warmup_steps = max( | |
len(timesteps) - num_inference_steps * self.scheduler.order, 0 | |
) | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if conditioning_mask is not None and image_cond_noise_scale > 0.0: | |
latents = self.add_noise_to_image_conditioning_latents( | |
t, | |
init_latents, | |
latents, | |
image_cond_noise_scale, | |
orig_conditioning_mask, | |
generator, | |
) | |
latent_model_input = ( | |
torch.cat([latents] * num_conds) if num_conds > 1 else latents | |
) | |
latent_model_input = self.scheduler.scale_model_input( | |
latent_model_input, t | |
) | |
current_timestep = t | |
if not torch.is_tensor(current_timestep): | |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = latent_model_input.device.type == "mps" | |
if isinstance(current_timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
current_timestep = torch.tensor( | |
[current_timestep], | |
dtype=dtype, | |
device=latent_model_input.device, | |
) | |
elif len(current_timestep.shape) == 0: | |
current_timestep = current_timestep[None].to( | |
latent_model_input.device | |
) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
current_timestep = current_timestep.expand( | |
latent_model_input.shape[0] | |
).unsqueeze(-1) | |
if conditioning_mask is not None: | |
# Conditioning latents have an initial timestep and noising level of (1.0 - conditioning_mask) | |
# and will start to be denoised when the current timestep is lower than their conditioning timestep. | |
current_timestep = torch.min( | |
current_timestep, 1.0 - conditioning_mask | |
) | |
# Choose the appropriate context manager based on `mixed_precision` | |
if mixed_precision: | |
context_manager = torch.autocast(device.type, dtype=torch.bfloat16) | |
else: | |
context_manager = nullcontext() # Dummy context manager | |
# predict noise model_output | |
with context_manager: | |
noise_pred = self.transformer( | |
latent_model_input.to(self.transformer.dtype), | |
indices_grid=fractional_coords, | |
encoder_hidden_states=prompt_embeds_batch.to( | |
self.transformer.dtype | |
), | |
encoder_attention_mask=prompt_attention_mask_batch, | |
timestep=current_timestep, | |
skip_layer_mask=( | |
skip_layer_masks[i] | |
if skip_layer_masks is not None | |
else None | |
), | |
skip_layer_strategy=skip_layer_strategy, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_spatio_temporal_guidance: | |
noise_pred_text, noise_pred_text_perturb = noise_pred.chunk( | |
num_conds | |
)[-2:] | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(num_conds)[:2] | |
if cfg_star_rescale: | |
# Rescales the unconditional noise prediction using the projection of the conditional prediction onto it: | |
# α = (⟨ε_text, ε_uncond⟩ / ||ε_uncond||²), then ε_uncond ← α * ε_uncond | |
# where ε_text is the conditional noise prediction and ε_uncond is the unconditional one. | |
positive_flat = noise_pred_text.view(batch_size, -1) | |
negative_flat = noise_pred_uncond.view(batch_size, -1) | |
dot_product = torch.sum( | |
positive_flat * negative_flat, dim=1, keepdim=True | |
) | |
squared_norm = ( | |
torch.sum(negative_flat**2, dim=1, keepdim=True) + 1e-8 | |
) | |
alpha = dot_product / squared_norm | |
noise_pred_uncond = alpha * noise_pred_uncond | |
noise_pred = noise_pred_uncond + guidance_scale[i] * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
elif do_spatio_temporal_guidance: | |
noise_pred = noise_pred_text | |
if do_spatio_temporal_guidance: | |
noise_pred = noise_pred + stg_scale[i] * ( | |
noise_pred_text - noise_pred_text_perturb | |
) | |
if do_rescaling and stg_scale[i] > 0.0: | |
noise_pred_text_std = noise_pred_text.view(batch_size, -1).std( | |
dim=1, keepdim=True | |
) | |
noise_pred_std = noise_pred.view(batch_size, -1).std( | |
dim=1, keepdim=True | |
) | |
factor = noise_pred_text_std / noise_pred_std | |
factor = rescaling_scale[i] * factor + (1 - rescaling_scale[i]) | |
noise_pred = noise_pred * factor.view(batch_size, 1, 1) | |
current_timestep = current_timestep[:1] | |
# learned sigma | |
if ( | |
self.transformer.config.out_channels // 2 | |
== self.transformer.config.in_channels | |
): | |
noise_pred = noise_pred.chunk(2, dim=1)[0] | |
# compute previous image: x_t -> x_t-1 | |
latents = self.denoising_step( | |
latents, | |
noise_pred, | |
current_timestep, | |
orig_conditioning_mask, | |
t, | |
extra_step_kwargs, | |
stochastic_sampling=stochastic_sampling, | |
) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ( | |
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
): | |
progress_bar.update() | |
if callback_on_step_end is not None: | |
callback_on_step_end(self, i, t, {}) | |
if offload_to_cpu: | |
self.transformer = self.transformer.cpu() | |
if self._execution_device == "cuda": | |
torch.cuda.empty_cache() | |
# Remove the added conditioning latents | |
latents = latents[:, num_cond_latents:] | |
latents = self.patchifier.unpatchify( | |
latents=latents, | |
output_height=latent_height, | |
output_width=latent_width, | |
out_channels=self.transformer.in_channels | |
// math.prod(self.patchifier.patch_size), | |
) | |
if output_type != "latent": | |
if self.vae.decoder.timestep_conditioning: | |
noise = torch.randn_like(latents) | |
if not isinstance(decode_timestep, list): | |
decode_timestep = [decode_timestep] * latents.shape[0] | |
if decode_noise_scale is None: | |
decode_noise_scale = decode_timestep | |
elif not isinstance(decode_noise_scale, list): | |
decode_noise_scale = [decode_noise_scale] * latents.shape[0] | |
decode_timestep = torch.tensor(decode_timestep).to(latents.device) | |
decode_noise_scale = torch.tensor(decode_noise_scale).to( | |
latents.device | |
)[:, None, None, None, None] | |
latents = ( | |
latents * (1 - decode_noise_scale) + noise * decode_noise_scale | |
) | |
else: | |
decode_timestep = None | |
image = vae_decode( | |
latents, | |
self.vae, | |
is_video, | |
vae_per_channel_normalize=kwargs["vae_per_channel_normalize"], | |
timestep=decode_timestep, | |
) | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
else: | |
image = latents | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |
def denoising_step( | |
self, | |
latents: torch.Tensor, | |
noise_pred: torch.Tensor, | |
current_timestep: torch.Tensor, | |
conditioning_mask: torch.Tensor, | |
t: float, | |
extra_step_kwargs, | |
t_eps=1e-6, | |
stochastic_sampling=False, | |
): | |
""" | |
Perform the denoising step for the required tokens, based on the current timestep and | |
conditioning mask: | |
Conditioning latents have an initial timestep and noising level of (1.0 - conditioning_mask) | |
and will start to be denoised when the current timestep is equal or lower than their | |
conditioning timestep. | |
(hard-conditioning latents with conditioning_mask = 1.0 are never denoised) | |
""" | |
# Denoise the latents using the scheduler | |
denoised_latents = self.scheduler.step( | |
noise_pred, | |
t if current_timestep is None else current_timestep, | |
latents, | |
**extra_step_kwargs, | |
return_dict=False, | |
stochastic_sampling=stochastic_sampling, | |
)[0] | |
if conditioning_mask is None: | |
return denoised_latents | |
tokens_to_denoise_mask = (t - t_eps < (1.0 - conditioning_mask)).unsqueeze(-1) | |
return torch.where(tokens_to_denoise_mask, denoised_latents, latents) | |
def prepare_conditioning( | |
self, | |
conditioning_items: Optional[List[ConditioningItem]], | |
init_latents: torch.Tensor, | |
num_frames: int, | |
height: int, | |
width: int, | |
vae_per_channel_normalize: bool = False, | |
generator=None, | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]: | |
""" | |
Prepare conditioning tokens based on the provided conditioning items. | |
This method encodes provided conditioning items (video frames or single frames) into latents | |
and integrates them with the initial latent tensor. It also calculates corresponding pixel | |
coordinates, a mask indicating the influence of conditioning latents, and the total number of | |
conditioning latents. | |
Args: | |
conditioning_items (Optional[List[ConditioningItem]]): A list of ConditioningItem objects. | |
init_latents (torch.Tensor): The initial latent tensor of shape (b, c, f_l, h_l, w_l), where | |
`f_l` is the number of latent frames, and `h_l` and `w_l` are latent spatial dimensions. | |
num_frames, height, width: The dimensions of the generated video. | |
vae_per_channel_normalize (bool, optional): Whether to normalize channels during VAE encoding. | |
Defaults to `False`. | |
generator: The random generator | |
Returns: | |
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]: | |
- `init_latents` (torch.Tensor): The updated latent tensor including conditioning latents, | |
patchified into (b, n, c) shape. | |
- `init_pixel_coords` (torch.Tensor): The pixel coordinates corresponding to the updated | |
latent tensor. | |
- `conditioning_mask` (torch.Tensor): A mask indicating the conditioning-strength of each | |
latent token. | |
- `num_cond_latents` (int): The total number of latent tokens added from conditioning items. | |
Raises: | |
AssertionError: If input shapes, dimensions, or conditions for applying conditioning are invalid. | |
""" | |
assert isinstance(self.vae, CausalVideoAutoencoder) | |
if conditioning_items: | |
batch_size, _, num_latent_frames = init_latents.shape[:3] | |
init_conditioning_mask = torch.zeros( | |
init_latents[:, 0, :, :, :].shape, | |
dtype=torch.float32, | |
device=init_latents.device, | |
) | |
extra_conditioning_latents = [] | |
extra_conditioning_pixel_coords = [] | |
extra_conditioning_mask = [] | |
extra_conditioning_num_latents = 0 # Number of extra conditioning latents added (should be removed before decoding) | |
# Process each conditioning item | |
for conditioning_item in conditioning_items: | |
conditioning_item = self._resize_conditioning_item( | |
conditioning_item, height, width | |
) | |
media_item = conditioning_item.media_item | |
media_frame_number = conditioning_item.media_frame_number | |
strength = conditioning_item.conditioning_strength | |
assert media_item.ndim == 5 # (b, c, f, h, w) | |
b, c, n_frames, h, w = media_item.shape | |
assert ( | |
height == h and width == w | |
) or media_frame_number == 0, f"Dimensions do not match: {height}x{width} != {h}x{w} - allowed only when media_frame_number == 0" | |
assert n_frames % 8 == 1 | |
assert ( | |
media_frame_number >= 0 | |
and media_frame_number + n_frames <= num_frames | |
) | |
# Encode the provided conditioning media item | |
media_item_latents = vae_encode( | |
media_item.to(dtype=self.vae.dtype, device=self.vae.device), | |
self.vae, | |
vae_per_channel_normalize=vae_per_channel_normalize, | |
).to(dtype=init_latents.dtype) | |
# Handle the different conditioning cases | |
if media_frame_number == 0: | |
# Get the target spatial position of the latent conditioning item | |
media_item_latents, l_x, l_y = self._get_latent_spatial_position( | |
media_item_latents, | |
conditioning_item, | |
height, | |
width, | |
strip_latent_border=True, | |
) | |
b, c_l, f_l, h_l, w_l = media_item_latents.shape | |
# First frame or sequence - just update the initial noise latents and the mask | |
init_latents[:, :, :f_l, l_y : l_y + h_l, l_x : l_x + w_l] = ( | |
torch.lerp( | |
init_latents[:, :, :f_l, l_y : l_y + h_l, l_x : l_x + w_l], | |
media_item_latents, | |
strength, | |
) | |
) | |
init_conditioning_mask[ | |
:, :f_l, l_y : l_y + h_l, l_x : l_x + w_l | |
] = strength | |
else: | |
# Non-first frame or sequence | |
if n_frames > 1: | |
# Handle non-first sequence. | |
# Encoded latents are either fully consumed, or the prefix is handled separately below. | |
( | |
init_latents, | |
init_conditioning_mask, | |
media_item_latents, | |
) = self._handle_non_first_conditioning_sequence( | |
init_latents, | |
init_conditioning_mask, | |
media_item_latents, | |
media_frame_number, | |
strength, | |
) | |
# Single frame or sequence-prefix latents | |
if media_item_latents is not None: | |
noise = randn_tensor( | |
media_item_latents.shape, | |
generator=generator, | |
device=media_item_latents.device, | |
dtype=media_item_latents.dtype, | |
) | |
media_item_latents = torch.lerp( | |
noise, media_item_latents, strength | |
) | |
# Patchify the extra conditioning latents and calculate their pixel coordinates | |
media_item_latents, latent_coords = self.patchifier.patchify( | |
latents=media_item_latents | |
) | |
pixel_coords = latent_to_pixel_coords( | |
latent_coords, | |
self.vae, | |
causal_fix=self.transformer.config.causal_temporal_positioning, | |
) | |
# Update the frame numbers to match the target frame number | |
pixel_coords[:, 0] += media_frame_number | |
extra_conditioning_num_latents += media_item_latents.shape[1] | |
conditioning_mask = torch.full( | |
media_item_latents.shape[:2], | |
strength, | |
dtype=torch.float32, | |
device=init_latents.device, | |
) | |
extra_conditioning_latents.append(media_item_latents) | |
extra_conditioning_pixel_coords.append(pixel_coords) | |
extra_conditioning_mask.append(conditioning_mask) | |
# Patchify the updated latents and calculate their pixel coordinates | |
init_latents, init_latent_coords = self.patchifier.patchify( | |
latents=init_latents | |
) | |
init_pixel_coords = latent_to_pixel_coords( | |
init_latent_coords, | |
self.vae, | |
causal_fix=self.transformer.config.causal_temporal_positioning, | |
) | |
if not conditioning_items: | |
return init_latents, init_pixel_coords, None, 0 | |
init_conditioning_mask, _ = self.patchifier.patchify( | |
latents=init_conditioning_mask.unsqueeze(1) | |
) | |
init_conditioning_mask = init_conditioning_mask.squeeze(-1) | |
if extra_conditioning_latents: | |
# Stack the extra conditioning latents, pixel coordinates and mask | |
init_latents = torch.cat([*extra_conditioning_latents, init_latents], dim=1) | |
init_pixel_coords = torch.cat( | |
[*extra_conditioning_pixel_coords, init_pixel_coords], dim=2 | |
) | |
init_conditioning_mask = torch.cat( | |
[*extra_conditioning_mask, init_conditioning_mask], dim=1 | |
) | |
if self.transformer.use_tpu_flash_attention: | |
# When flash attention is used, keep the original number of tokens by removing | |
# tokens from the end. | |
init_latents = init_latents[:, :-extra_conditioning_num_latents] | |
init_pixel_coords = init_pixel_coords[ | |
:, :, :-extra_conditioning_num_latents | |
] | |
init_conditioning_mask = init_conditioning_mask[ | |
:, :-extra_conditioning_num_latents | |
] | |
return ( | |
init_latents, | |
init_pixel_coords, | |
init_conditioning_mask, | |
extra_conditioning_num_latents, | |
) | |
def _resize_conditioning_item( | |
conditioning_item: ConditioningItem, | |
height: int, | |
width: int, | |
): | |
if conditioning_item.media_x or conditioning_item.media_y: | |
raise ValueError( | |
"Provide media_item in the target size for spatial conditioning." | |
) | |
new_conditioning_item = copy.copy(conditioning_item) | |
new_conditioning_item.media_item = LTXVideoPipeline.resize_tensor( | |
conditioning_item.media_item, height, width | |
) | |
return new_conditioning_item | |
def _get_latent_spatial_position( | |
self, | |
latents: torch.Tensor, | |
conditioning_item: ConditioningItem, | |
height: int, | |
width: int, | |
strip_latent_border, | |
): | |
""" | |
Get the spatial position of the conditioning item in the latent space. | |
If requested, strip the conditioning latent borders that do not align with target borders. | |
(border latents look different then other latents and might confuse the model) | |
""" | |
scale = self.vae_scale_factor | |
h, w = conditioning_item.media_item.shape[-2:] | |
assert ( | |
h <= height and w <= width | |
), f"Conditioning item size {h}x{w} is larger than target size {height}x{width}" | |
assert h % scale == 0 and w % scale == 0 | |
# Compute the start and end spatial positions of the media item | |
x_start, y_start = conditioning_item.media_x, conditioning_item.media_y | |
x_start = (width - w) // 2 if x_start is None else x_start | |
y_start = (height - h) // 2 if y_start is None else y_start | |
x_end, y_end = x_start + w, y_start + h | |
assert ( | |
x_end <= width and y_end <= height | |
), f"Conditioning item {x_start}:{x_end}x{y_start}:{y_end} is out of bounds for target size {width}x{height}" | |
if strip_latent_border: | |
# Strip one latent from left/right and/or top/bottom, update x, y accordingly | |
if x_start > 0: | |
x_start += scale | |
latents = latents[:, :, :, :, 1:] | |
if y_start > 0: | |
y_start += scale | |
latents = latents[:, :, :, 1:, :] | |
if x_end < width: | |
latents = latents[:, :, :, :, :-1] | |
if y_end < height: | |
latents = latents[:, :, :, :-1, :] | |
return latents, x_start // scale, y_start // scale | |
def _handle_non_first_conditioning_sequence( | |
init_latents: torch.Tensor, | |
init_conditioning_mask: torch.Tensor, | |
latents: torch.Tensor, | |
media_frame_number: int, | |
strength: float, | |
num_prefix_latent_frames: int = 2, | |
prefix_latents_mode: str = "concat", | |
prefix_soft_conditioning_strength: float = 0.15, | |
): | |
""" | |
Special handling for a conditioning sequence that does not start on the first frame. | |
The special handling is required to allow a short encoded video to be used as middle | |
(or last) sequence in a longer video. | |
Args: | |
init_latents (torch.Tensor): The initial noise latents to be updated. | |
init_conditioning_mask (torch.Tensor): The initial conditioning mask to be updated. | |
latents (torch.Tensor): The encoded conditioning item. | |
media_frame_number (int): The target frame number of the first frame in the conditioning sequence. | |
strength (float): The conditioning strength for the conditioning latents. | |
num_prefix_latent_frames (int, optional): The length of the sequence prefix, to be handled | |
separately. Defaults to 2. | |
prefix_latents_mode (str, optional): Special treatment for prefix (boundary) latents. | |
- "drop": Drop the prefix latents. | |
- "soft": Use the prefix latents, but with soft-conditioning | |
- "concat": Add the prefix latents as extra tokens (like single frames) | |
prefix_soft_conditioning_strength (float, optional): The strength of the soft-conditioning for | |
the prefix latents, relevant if `prefix_latents_mode` is "soft". Defaults to 0.1. | |
""" | |
f_l = latents.shape[2] | |
f_l_p = num_prefix_latent_frames | |
assert f_l >= f_l_p | |
assert media_frame_number % 8 == 0 | |
if f_l > f_l_p: | |
# Insert the conditioning latents **excluding the prefix** into the sequence | |
f_l_start = media_frame_number // 8 + f_l_p | |
f_l_end = f_l_start + f_l - f_l_p | |
init_latents[:, :, f_l_start:f_l_end] = torch.lerp( | |
init_latents[:, :, f_l_start:f_l_end], | |
latents[:, :, f_l_p:], | |
strength, | |
) | |
# Mark these latent frames as conditioning latents | |
init_conditioning_mask[:, f_l_start:f_l_end] = strength | |
# Handle the prefix-latents | |
if prefix_latents_mode == "soft": | |
if f_l_p > 1: | |
# Drop the first (single-frame) latent and soft-condition the remaining prefix | |
f_l_start = media_frame_number // 8 + 1 | |
f_l_end = f_l_start + f_l_p - 1 | |
strength = min(prefix_soft_conditioning_strength, strength) | |
init_latents[:, :, f_l_start:f_l_end] = torch.lerp( | |
init_latents[:, :, f_l_start:f_l_end], | |
latents[:, :, 1:f_l_p], | |
strength, | |
) | |
# Mark these latent frames as conditioning latents | |
init_conditioning_mask[:, f_l_start:f_l_end] = strength | |
latents = None # No more latents to handle | |
elif prefix_latents_mode == "drop": | |
# Drop the prefix latents | |
latents = None | |
elif prefix_latents_mode == "concat": | |
# Pass-on the prefix latents to be handled as extra conditioning frames | |
latents = latents[:, :, :f_l_p] | |
else: | |
raise ValueError(f"Invalid prefix_latents_mode: {prefix_latents_mode}") | |
return ( | |
init_latents, | |
init_conditioning_mask, | |
latents, | |
) | |
def trim_conditioning_sequence( | |
self, start_frame: int, sequence_num_frames: int, target_num_frames: int | |
): | |
""" | |
Trim a conditioning sequence to the allowed number of frames. | |
Args: | |
start_frame (int): The target frame number of the first frame in the sequence. | |
sequence_num_frames (int): The number of frames in the sequence. | |
target_num_frames (int): The target number of frames in the generated video. | |
Returns: | |
int: updated sequence length | |
""" | |
scale_factor = self.video_scale_factor | |
num_frames = min(sequence_num_frames, target_num_frames - start_frame) | |
# Trim down to a multiple of temporal_scale_factor frames plus 1 | |
num_frames = (num_frames - 1) // scale_factor * scale_factor + 1 | |
return num_frames | |
def adain_filter_latent( | |
latents: torch.Tensor, reference_latents: torch.Tensor, factor=1.0 | |
): | |
""" | |
Applies Adaptive Instance Normalization (AdaIN) to a latent tensor based on | |
statistics from a reference latent tensor. | |
Args: | |
latent (torch.Tensor): Input latents to normalize | |
reference_latent (torch.Tensor): The reference latents providing style statistics. | |
factor (float): Blending factor between original and transformed latent. | |
Range: -10.0 to 10.0, Default: 1.0 | |
Returns: | |
torch.Tensor: The transformed latent tensor | |
""" | |
result = latents.clone() | |
for i in range(latents.size(0)): | |
for c in range(latents.size(1)): | |
r_sd, r_mean = torch.std_mean( | |
reference_latents[i, c], dim=None | |
) # index by original dim order | |
i_sd, i_mean = torch.std_mean(result[i, c], dim=None) | |
result[i, c] = ((result[i, c] - i_mean) / i_sd) * r_sd + r_mean | |
result = torch.lerp(latents, result, factor) | |
return result | |
class LTXMultiScalePipeline: | |
def _upsample_latents( | |
self, latest_upsampler: LatentUpsampler, latents: torch.Tensor | |
): | |
assert latents.device == latest_upsampler.device | |
latents = un_normalize_latents( | |
latents, self.vae, vae_per_channel_normalize=True | |
) | |
upsampled_latents = latest_upsampler(latents) | |
upsampled_latents = normalize_latents( | |
upsampled_latents, self.vae, vae_per_channel_normalize=True | |
) | |
return upsampled_latents | |
def __init__( | |
self, video_pipeline: LTXVideoPipeline, latent_upsampler: LatentUpsampler | |
): | |
self.video_pipeline = video_pipeline | |
self.vae = video_pipeline.vae | |
self.latent_upsampler = latent_upsampler | |
def __call__( | |
self, | |
downscale_factor: float, | |
first_pass: dict, | |
second_pass: dict, | |
*args: Any, | |
**kwargs: Any, | |
) -> Any: | |
original_kwargs = kwargs.copy() | |
original_output_type = kwargs["output_type"] | |
original_width = kwargs["width"] | |
original_height = kwargs["height"] | |
x_width = int(kwargs["width"] * downscale_factor) | |
downscaled_width = x_width - (x_width % self.video_pipeline.vae_scale_factor) | |
x_height = int(kwargs["height"] * downscale_factor) | |
downscaled_height = x_height - (x_height % self.video_pipeline.vae_scale_factor) | |
kwargs["output_type"] = "latent" | |
kwargs["width"] = downscaled_width | |
kwargs["height"] = downscaled_height | |
kwargs.update(**first_pass) | |
result = self.video_pipeline(*args, **kwargs) | |
latents = result.images | |
upsampled_latents = self._upsample_latents(self.latent_upsampler, latents) | |
upsampled_latents = adain_filter_latent( | |
latents=upsampled_latents, reference_latents=latents | |
) | |
kwargs = original_kwargs | |
kwargs["latents"] = upsampled_latents | |
kwargs["output_type"] = original_output_type | |
kwargs["width"] = downscaled_width * 2 | |
kwargs["height"] = downscaled_height * 2 | |
kwargs.update(**second_pass) | |
result = self.video_pipeline(*args, **kwargs) | |
if original_output_type != "latent": | |
num_frames = result.images.shape[2] | |
videos = rearrange(result.images, "b c f h w -> (b f) c h w") | |
videos = F.interpolate( | |
videos, | |
size=(original_height, original_width), | |
mode="bilinear", | |
align_corners=False, | |
) | |
videos = rearrange(videos, "(b f) c h w -> b c f h w", f=num_frames) | |
result.images = videos | |
return result | |