ltx-video-distilled / ltx_video /pipelines /pipeline_ltx_video.py
linoyts's picture
linoyts HF Staff
Upload 35 files
833590f verified
# Adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py
import copy
import inspect
import math
import re
from contextlib import nullcontext
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DPMSolverMultistepScheduler
from diffusers.utils import deprecate, logging
from diffusers.utils.torch_utils import randn_tensor
from einops import rearrange
from transformers import (
T5EncoderModel,
T5Tokenizer,
AutoModelForCausalLM,
AutoProcessor,
AutoTokenizer,
)
from ltx_video.models.autoencoders.causal_video_autoencoder import (
CausalVideoAutoencoder,
)
from ltx_video.models.autoencoders.vae_encode import (
get_vae_size_scale_factor,
latent_to_pixel_coords,
vae_decode,
vae_encode,
)
from ltx_video.models.transformers.symmetric_patchifier import Patchifier
from ltx_video.models.transformers.transformer3d import Transformer3DModel
from ltx_video.schedulers.rf import TimestepShifter
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
from ltx_video.utils.prompt_enhance_utils import generate_cinematic_prompt
from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
from ltx_video.models.autoencoders.vae_encode import (
un_normalize_latents,
normalize_latents,
)
try:
import torch_xla.distributed.spmd as xs
except ImportError:
xs = None
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
ASPECT_RATIO_1024_BIN = {
"0.25": [512.0, 2048.0],
"0.28": [512.0, 1856.0],
"0.32": [576.0, 1792.0],
"0.33": [576.0, 1728.0],
"0.35": [576.0, 1664.0],
"0.4": [640.0, 1600.0],
"0.42": [640.0, 1536.0],
"0.48": [704.0, 1472.0],
"0.5": [704.0, 1408.0],
"0.52": [704.0, 1344.0],
"0.57": [768.0, 1344.0],
"0.6": [768.0, 1280.0],
"0.68": [832.0, 1216.0],
"0.72": [832.0, 1152.0],
"0.78": [896.0, 1152.0],
"0.82": [896.0, 1088.0],
"0.88": [960.0, 1088.0],
"0.94": [960.0, 1024.0],
"1.0": [1024.0, 1024.0],
"1.07": [1024.0, 960.0],
"1.13": [1088.0, 960.0],
"1.21": [1088.0, 896.0],
"1.29": [1152.0, 896.0],
"1.38": [1152.0, 832.0],
"1.46": [1216.0, 832.0],
"1.67": [1280.0, 768.0],
"1.75": [1344.0, 768.0],
"2.0": [1408.0, 704.0],
"2.09": [1472.0, 704.0],
"2.4": [1536.0, 640.0],
"2.5": [1600.0, 640.0],
"3.0": [1728.0, 576.0],
"4.0": [2048.0, 512.0],
}
ASPECT_RATIO_512_BIN = {
"0.25": [256.0, 1024.0],
"0.28": [256.0, 928.0],
"0.32": [288.0, 896.0],
"0.33": [288.0, 864.0],
"0.35": [288.0, 832.0],
"0.4": [320.0, 800.0],
"0.42": [320.0, 768.0],
"0.48": [352.0, 736.0],
"0.5": [352.0, 704.0],
"0.52": [352.0, 672.0],
"0.57": [384.0, 672.0],
"0.6": [384.0, 640.0],
"0.68": [416.0, 608.0],
"0.72": [416.0, 576.0],
"0.78": [448.0, 576.0],
"0.82": [448.0, 544.0],
"0.88": [480.0, 544.0],
"0.94": [480.0, 512.0],
"1.0": [512.0, 512.0],
"1.07": [512.0, 480.0],
"1.13": [544.0, 480.0],
"1.21": [544.0, 448.0],
"1.29": [576.0, 448.0],
"1.38": [576.0, 416.0],
"1.46": [608.0, 416.0],
"1.67": [640.0, 384.0],
"1.75": [672.0, 384.0],
"2.0": [704.0, 352.0],
"2.09": [736.0, 352.0],
"2.4": [768.0, 320.0],
"2.5": [800.0, 320.0],
"3.0": [864.0, 288.0],
"4.0": [1024.0, 256.0],
}
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
skip_initial_inference_steps: int = 0,
skip_final_inference_steps: int = 0,
**kwargs,
):
"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used,
`timesteps` must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
must be `None`.
max_timestep ('float', *optional*, defaults to 1.0):
The initial noising level for image-to-image/video-to-video. The list if timestamps will be
truncated to start with a timestamp greater or equal to this.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None:
accepts_timesteps = "timesteps" in set(
inspect.signature(scheduler.set_timesteps).parameters.keys()
)
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
if (
skip_initial_inference_steps < 0
or skip_final_inference_steps < 0
or skip_initial_inference_steps + skip_final_inference_steps
>= num_inference_steps
):
raise ValueError(
"invalid skip inference step values: must be non-negative and the sum of skip_initial_inference_steps and skip_final_inference_steps must be less than the number of inference steps"
)
timesteps = timesteps[
skip_initial_inference_steps : len(timesteps) - skip_final_inference_steps
]
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
num_inference_steps = len(timesteps)
return timesteps, num_inference_steps
@dataclass
class ConditioningItem:
"""
Defines a single frame-conditioning item - a single frame or a sequence of frames.
Attributes:
media_item (torch.Tensor): shape=(b, 3, f, h, w). The media item to condition on.
media_frame_number (int): The start-frame number of the media item in the generated video.
conditioning_strength (float): The strength of the conditioning (1.0 = full conditioning).
media_x (Optional[int]): Optional left x coordinate of the media item in the generated frame.
media_y (Optional[int]): Optional top y coordinate of the media item in the generated frame.
"""
media_item: torch.Tensor
media_frame_number: int
conditioning_strength: float
media_x: Optional[int] = None
media_y: Optional[int] = None
class LTXVideoPipeline(DiffusionPipeline):
r"""
Pipeline for text-to-image generation using LTX-Video.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`T5EncoderModel`]):
Frozen text-encoder. This uses
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
tokenizer (`T5Tokenizer`):
Tokenizer of class
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
transformer ([`Transformer2DModel`]):
A text conditioned `Transformer2DModel` to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
"""
bad_punct_regex = re.compile(
r"["
+ "#®•©™&@·º½¾¿¡§~"
+ r"\)"
+ r"\("
+ r"\]"
+ r"\["
+ r"\}"
+ r"\{"
+ r"\|"
+ "\\"
+ r"\/"
+ r"\*"
+ r"]{1,}"
) # noqa
_optional_components = [
"tokenizer",
"text_encoder",
"prompt_enhancer_image_caption_model",
"prompt_enhancer_image_caption_processor",
"prompt_enhancer_llm_model",
"prompt_enhancer_llm_tokenizer",
]
model_cpu_offload_seq = "prompt_enhancer_image_caption_model->prompt_enhancer_llm_model->text_encoder->transformer->vae"
def __init__(
self,
tokenizer: T5Tokenizer,
text_encoder: T5EncoderModel,
vae: AutoencoderKL,
transformer: Transformer3DModel,
scheduler: DPMSolverMultistepScheduler,
patchifier: Patchifier,
prompt_enhancer_image_caption_model: AutoModelForCausalLM,
prompt_enhancer_image_caption_processor: AutoProcessor,
prompt_enhancer_llm_model: AutoModelForCausalLM,
prompt_enhancer_llm_tokenizer: AutoTokenizer,
allowed_inference_steps: Optional[List[float]] = None,
):
super().__init__()
self.register_modules(
tokenizer=tokenizer,
text_encoder=text_encoder,
vae=vae,
transformer=transformer,
scheduler=scheduler,
patchifier=patchifier,
prompt_enhancer_image_caption_model=prompt_enhancer_image_caption_model,
prompt_enhancer_image_caption_processor=prompt_enhancer_image_caption_processor,
prompt_enhancer_llm_model=prompt_enhancer_llm_model,
prompt_enhancer_llm_tokenizer=prompt_enhancer_llm_tokenizer,
)
self.video_scale_factor, self.vae_scale_factor, _ = get_vae_size_scale_factor(
self.vae
)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.allowed_inference_steps = allowed_inference_steps
def mask_text_embeddings(self, emb, mask):
if emb.shape[0] == 1:
keep_index = mask.sum().item()
return emb[:, :, :keep_index, :], keep_index
else:
masked_feature = emb * mask[:, None, :, None]
return masked_feature, emb.shape[2]
# Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
def encode_prompt(
self,
prompt: Union[str, List[str]],
do_classifier_free_guidance: bool = True,
negative_prompt: str = "",
num_images_per_prompt: int = 1,
device: Optional[torch.device] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
prompt_attention_mask: Optional[torch.FloatTensor] = None,
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
text_encoder_max_tokens: int = 256,
**kwargs,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
negative_prompt (`str` or `List[str]`, *optional*):
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
This should be "".
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
whether to use classifier free guidance or not
num_images_per_prompt (`int`, *optional*, defaults to 1):
number of images that should be generated per prompt
device: (`torch.device`, *optional*):
torch device to place the resulting embeddings on
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings.
"""
if "mask_feature" in kwargs:
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
if device is None:
device = self._execution_device
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# See Section 3.1. of the paper.
max_length = (
text_encoder_max_tokens # TPU supports only lengths multiple of 128
)
if prompt_embeds is None:
assert (
self.text_encoder is not None
), "You should provide either prompt_embeds or self.text_encoder should not be None,"
text_enc_device = next(self.text_encoder.parameters()).device
prompt = self._text_preprocessing(prompt)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=max_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(
prompt, padding="longest", return_tensors="pt"
).input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[
-1
] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {max_length} tokens: {removed_text}"
)
prompt_attention_mask = text_inputs.attention_mask
prompt_attention_mask = prompt_attention_mask.to(text_enc_device)
prompt_attention_mask = prompt_attention_mask.to(device)
prompt_embeds = self.text_encoder(
text_input_ids.to(text_enc_device), attention_mask=prompt_attention_mask
)
prompt_embeds = prompt_embeds[0]
if self.text_encoder is not None:
dtype = self.text_encoder.dtype
elif self.transformer is not None:
dtype = self.transformer.dtype
else:
dtype = None
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(
bs_embed * num_images_per_prompt, seq_len, -1
)
prompt_attention_mask = prompt_attention_mask.repeat(1, num_images_per_prompt)
prompt_attention_mask = prompt_attention_mask.view(
bs_embed * num_images_per_prompt, -1
)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens = self._text_preprocessing(negative_prompt)
uncond_tokens = uncond_tokens * batch_size
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
negative_prompt_attention_mask = uncond_input.attention_mask
negative_prompt_attention_mask = negative_prompt_attention_mask.to(
text_enc_device
)
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(text_enc_device),
attention_mask=negative_prompt_attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(
dtype=dtype, device=device
)
negative_prompt_embeds = negative_prompt_embeds.repeat(
1, num_images_per_prompt, 1
)
negative_prompt_embeds = negative_prompt_embeds.view(
batch_size * num_images_per_prompt, seq_len, -1
)
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(
1, num_images_per_prompt
)
negative_prompt_attention_mask = negative_prompt_attention_mask.view(
bs_embed * num_images_per_prompt, -1
)
else:
negative_prompt_embeds = None
negative_prompt_attention_mask = None
return (
prompt_embeds,
prompt_attention_mask,
negative_prompt_embeds,
negative_prompt_attention_mask,
)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
height,
width,
negative_prompt,
prompt_embeds=None,
negative_prompt_embeds=None,
prompt_attention_mask=None,
negative_prompt_attention_mask=None,
enhance_prompt=False,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (
not isinstance(prompt, str) and not isinstance(prompt, list)
):
raise ValueError(
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
)
if prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and prompt_attention_mask is None:
raise ValueError(
"Must provide `prompt_attention_mask` when specifying `prompt_embeds`."
)
if (
negative_prompt_embeds is not None
and negative_prompt_attention_mask is None
):
raise ValueError(
"Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
raise ValueError(
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
f" {negative_prompt_attention_mask.shape}."
)
if enhance_prompt:
assert (
self.prompt_enhancer_image_caption_model is not None
), "Image caption model must be initialized if enhance_prompt is True"
assert (
self.prompt_enhancer_image_caption_processor is not None
), "Image caption processor must be initialized if enhance_prompt is True"
assert (
self.prompt_enhancer_llm_model is not None
), "Text prompt enhancer model must be initialized if enhance_prompt is True"
assert (
self.prompt_enhancer_llm_tokenizer is not None
), "Text prompt enhancer tokenizer must be initialized if enhance_prompt is True"
def _text_preprocessing(self, text):
if not isinstance(text, (tuple, list)):
text = [text]
def process(text: str):
text = text.strip()
return text
return [process(t) for t in text]
@staticmethod
def add_noise_to_image_conditioning_latents(
t: float,
init_latents: torch.Tensor,
latents: torch.Tensor,
noise_scale: float,
conditioning_mask: torch.Tensor,
generator,
eps=1e-6,
):
"""
Add timestep-dependent noise to the hard-conditioning latents.
This helps with motion continuity, especially when conditioned on a single frame.
"""
noise = randn_tensor(
latents.shape,
generator=generator,
device=latents.device,
dtype=latents.dtype,
)
# Add noise only to hard-conditioning latents (conditioning_mask = 1.0)
need_to_noise = (conditioning_mask > 1.0 - eps).unsqueeze(-1)
noised_latents = init_latents + noise_scale * noise * (t**2)
latents = torch.where(need_to_noise, noised_latents, latents)
return latents
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_latents(
self,
latents: torch.Tensor | None,
media_items: torch.Tensor | None,
timestep: float,
latent_shape: torch.Size | Tuple[Any, ...],
dtype: torch.dtype,
device: torch.device,
generator: torch.Generator | List[torch.Generator],
vae_per_channel_normalize: bool = True,
):
"""
Prepare the initial latent tensor to be denoised.
The latents are either pure noise or a noised version of the encoded media items.
Args:
latents (`torch.FloatTensor` or `None`):
The latents to use (provided by the user) or `None` to create new latents.
media_items (`torch.FloatTensor` or `None`):
An image or video to be updated using img2img or vid2vid. The media item is encoded and noised.
timestep (`float`):
The timestep to noise the encoded media_items to.
latent_shape (`torch.Size`):
The target latent shape.
dtype (`torch.dtype`):
The target dtype.
device (`torch.device`):
The target device.
generator (`torch.Generator` or `List[torch.Generator]`):
Generator(s) to be used for the noising process.
vae_per_channel_normalize ('bool'):
When encoding the media_items, whether to normalize the latents per-channel.
Returns:
`torch.FloatTensor`: The latents to be used for the denoising process. This is a tensor of shape
(batch_size, num_channels, height, width).
"""
if isinstance(generator, list) and len(generator) != latent_shape[0]:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {latent_shape[0]}. Make sure the batch size matches the length of the generators."
)
# Initialize the latents with the given latents or encoded media item, if provided
assert (
latents is None or media_items is None
), "Cannot provide both latents and media_items. Please provide only one of the two."
assert (
latents is None and media_items is None or timestep < 1.0
), "Input media_item or latents are provided, but they will be replaced with noise."
if media_items is not None:
latents = vae_encode(
media_items.to(dtype=self.vae.dtype, device=self.vae.device),
self.vae,
vae_per_channel_normalize=vae_per_channel_normalize,
)
if latents is not None:
assert (
latents.shape == latent_shape
), f"Latents have to be of shape {latent_shape} but are {latents.shape}."
latents = latents.to(device=device, dtype=dtype)
# For backward compatibility, generate in the "patchified" shape and rearrange
b, c, f, h, w = latent_shape
noise = randn_tensor(
(b, f * h * w, c), generator=generator, device=device, dtype=dtype
)
noise = rearrange(noise, "b (f h w) c -> b c f h w", f=f, h=h, w=w)
# scale the initial noise by the standard deviation required by the scheduler
noise = noise * self.scheduler.init_noise_sigma
if latents is None:
latents = noise
else:
# Noise the latents to the required (first) timestep
latents = timestep * noise + (1 - timestep) * latents
return latents
@staticmethod
def classify_height_width_bin(
height: int, width: int, ratios: dict
) -> Tuple[int, int]:
"""Returns binned height and width."""
ar = float(height / width)
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
default_hw = ratios[closest_ratio]
return int(default_hw[0]), int(default_hw[1])
@staticmethod
def resize_and_crop_tensor(
samples: torch.Tensor, new_width: int, new_height: int
) -> torch.Tensor:
n_frames, orig_height, orig_width = samples.shape[-3:]
# Check if resizing is needed
if orig_height != new_height or orig_width != new_width:
ratio = max(new_height / orig_height, new_width / orig_width)
resized_width = int(orig_width * ratio)
resized_height = int(orig_height * ratio)
# Resize
samples = LTXVideoPipeline.resize_tensor(
samples, resized_height, resized_width
)
# Center Crop
start_x = (resized_width - new_width) // 2
end_x = start_x + new_width
start_y = (resized_height - new_height) // 2
end_y = start_y + new_height
samples = samples[..., start_y:end_y, start_x:end_x]
return samples
@staticmethod
def resize_tensor(media_items, height, width):
n_frames = media_items.shape[2]
if media_items.shape[-2:] != (height, width):
media_items = rearrange(media_items, "b c n h w -> (b n) c h w")
media_items = F.interpolate(
media_items,
size=(height, width),
mode="bilinear",
align_corners=False,
)
media_items = rearrange(media_items, "(b n) c h w -> b c n h w", n=n_frames)
return media_items
@torch.no_grad()
def __call__(
self,
height: int,
width: int,
num_frames: int,
frame_rate: float,
prompt: Union[str, List[str]] = None,
negative_prompt: str = "",
num_inference_steps: int = 20,
skip_initial_inference_steps: int = 0,
skip_final_inference_steps: int = 0,
timesteps: List[int] = None,
guidance_scale: Union[float, List[float]] = 4.5,
cfg_star_rescale: bool = False,
skip_layer_strategy: Optional[SkipLayerStrategy] = None,
skip_block_list: Optional[Union[List[List[int]], List[int]]] = None,
stg_scale: Union[float, List[float]] = 1.0,
rescaling_scale: Union[float, List[float]] = 0.7,
guidance_timesteps: Optional[List[int]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
prompt_attention_mask: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
conditioning_items: Optional[List[ConditioningItem]] = None,
decode_timestep: Union[List[float], float] = 0.0,
decode_noise_scale: Optional[List[float]] = None,
mixed_precision: bool = False,
offload_to_cpu: bool = False,
enhance_prompt: bool = False,
text_encoder_max_tokens: int = 256,
stochastic_sampling: bool = False,
media_items: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[ImagePipelineOutput, Tuple]:
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference. If `timesteps` is provided, this parameter is ignored.
skip_initial_inference_steps (`int`, *optional*, defaults to 0):
The number of initial timesteps to skip. After calculating the timesteps, this number of timesteps will
be removed from the beginning of the timesteps list. Meaning the highest-timesteps values will not run.
skip_final_inference_steps (`int`, *optional*, defaults to 0):
The number of final timesteps to skip. After calculating the timesteps, this number of timesteps will
be removed from the end of the timesteps list. Meaning the lowest-timesteps values will not run.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
timesteps are used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 4.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
cfg_star_rescale (`bool`, *optional*, defaults to `False`):
If set to `True`, applies the CFG star rescale. Scales the negative prediction according to dot
product between positive and negative.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
height (`int`, *optional*, defaults to self.unet.config.sample_size):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size):
The width in pixels of the generated image.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. This negative prompt should be "". If not
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
Pre-generated attention mask for negative text embeddings.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
use_resolution_binning (`bool` defaults to `True`):
If set to `True`, the requested height and width are first mapped to the closest resolutions using
`ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
the requested resolution. Useful for generating non-square images.
enhance_prompt (`bool`, *optional*, defaults to `False`):
If set to `True`, the prompt is enhanced using a LLM model.
text_encoder_max_tokens (`int`, *optional*, defaults to `256`):
The maximum number of tokens to use for the text encoder.
stochastic_sampling (`bool`, *optional*, defaults to `False`):
If set to `True`, the sampling is stochastic. If set to `False`, the sampling is deterministic.
media_items ('torch.Tensor', *optional*):
The input media item used for image-to-image / video-to-video.
Examples:
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
returned where the first element is a list with the generated images
"""
if "mask_feature" in kwargs:
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
is_video = kwargs.get("is_video", False)
self.check_inputs(
prompt,
height,
width,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
prompt_attention_mask,
negative_prompt_attention_mask,
)
# 2. Default height and width to transformer
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
self.video_scale_factor = self.video_scale_factor if is_video else 1
vae_per_channel_normalize = kwargs.get("vae_per_channel_normalize", True)
image_cond_noise_scale = kwargs.get("image_cond_noise_scale", 0.0)
latent_height = height // self.vae_scale_factor
latent_width = width // self.vae_scale_factor
latent_num_frames = num_frames // self.video_scale_factor
if isinstance(self.vae, CausalVideoAutoencoder) and is_video:
latent_num_frames += 1
latent_shape = (
batch_size * num_images_per_prompt,
self.transformer.config.in_channels,
latent_num_frames,
latent_height,
latent_width,
)
# Prepare the list of denoising time-steps
retrieve_timesteps_kwargs = {}
if isinstance(self.scheduler, TimestepShifter):
retrieve_timesteps_kwargs["samples_shape"] = latent_shape
assert (
skip_initial_inference_steps == 0
or latents is not None
or media_items is not None
), (
f"skip_initial_inference_steps ({skip_initial_inference_steps}) is used for image-to-image/video-to-video - "
"media_item or latents should be provided."
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
skip_initial_inference_steps=skip_initial_inference_steps,
skip_final_inference_steps=skip_final_inference_steps,
**retrieve_timesteps_kwargs,
)
if self.allowed_inference_steps is not None:
for timestep in [round(x, 4) for x in timesteps.tolist()]:
assert (
timestep in self.allowed_inference_steps
), f"Invalid inference timestep {timestep}. Allowed timesteps are {self.allowed_inference_steps}."
if guidance_timesteps:
guidance_mapping = []
for timestep in timesteps:
indices = [
i for i, val in enumerate(guidance_timesteps) if val <= timestep
]
# assert len(indices) > 0, f"No guidance timestep found for {timestep}"
guidance_mapping.append(
indices[0] if len(indices) > 0 else (len(guidance_timesteps) - 1)
)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
if not isinstance(guidance_scale, List):
guidance_scale = [guidance_scale] * len(timesteps)
else:
guidance_scale = [
guidance_scale[guidance_mapping[i]] for i in range(len(timesteps))
]
# For simplicity, we are using a constant num_conds for all timesteps, so we need to zero
# out cases where the guidance scale should not be applied.
guidance_scale = [x if x > 1.0 else 0.0 for x in guidance_scale]
if not isinstance(stg_scale, List):
stg_scale = [stg_scale] * len(timesteps)
else:
stg_scale = [stg_scale[guidance_mapping[i]] for i in range(len(timesteps))]
if not isinstance(rescaling_scale, List):
rescaling_scale = [rescaling_scale] * len(timesteps)
else:
rescaling_scale = [
rescaling_scale[guidance_mapping[i]] for i in range(len(timesteps))
]
do_classifier_free_guidance = any(x > 1.0 for x in guidance_scale)
do_spatio_temporal_guidance = any(x > 0.0 for x in stg_scale)
do_rescaling = any(x != 1.0 for x in rescaling_scale)
num_conds = 1
if do_classifier_free_guidance:
num_conds += 1
if do_spatio_temporal_guidance:
num_conds += 1
# Normalize skip_block_list to always be None or a list of lists matching timesteps
if skip_block_list is not None:
# Convert single list to list of lists if needed
if len(skip_block_list) == 0 or not isinstance(skip_block_list[0], list):
skip_block_list = [skip_block_list] * len(timesteps)
else:
new_skip_block_list = []
for i, timestep in enumerate(timesteps):
new_skip_block_list.append(skip_block_list[guidance_mapping[i]])
skip_block_list = new_skip_block_list
# Prepare skip layer masks
skip_layer_masks: Optional[List[torch.Tensor]] = None
if do_spatio_temporal_guidance:
if skip_block_list is not None:
skip_layer_masks = [
self.transformer.create_skip_layer_mask(
batch_size, num_conds, num_conds - 1, skip_blocks
)
for skip_blocks in skip_block_list
]
if enhance_prompt:
self.prompt_enhancer_image_caption_model = (
self.prompt_enhancer_image_caption_model.to(self._execution_device)
)
self.prompt_enhancer_llm_model = self.prompt_enhancer_llm_model.to(
self._execution_device
)
prompt = generate_cinematic_prompt(
self.prompt_enhancer_image_caption_model,
self.prompt_enhancer_image_caption_processor,
self.prompt_enhancer_llm_model,
self.prompt_enhancer_llm_tokenizer,
prompt,
conditioning_items,
max_new_tokens=text_encoder_max_tokens,
)
# 3. Encode input prompt
if self.text_encoder is not None:
self.text_encoder = self.text_encoder.to(self._execution_device)
(
prompt_embeds,
prompt_attention_mask,
negative_prompt_embeds,
negative_prompt_attention_mask,
) = self.encode_prompt(
prompt,
do_classifier_free_guidance,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
negative_prompt_attention_mask=negative_prompt_attention_mask,
text_encoder_max_tokens=text_encoder_max_tokens,
)
if offload_to_cpu and self.text_encoder is not None:
self.text_encoder = self.text_encoder.cpu()
self.transformer = self.transformer.to(self._execution_device)
prompt_embeds_batch = prompt_embeds
prompt_attention_mask_batch = prompt_attention_mask
if do_classifier_free_guidance:
prompt_embeds_batch = torch.cat(
[negative_prompt_embeds, prompt_embeds], dim=0
)
prompt_attention_mask_batch = torch.cat(
[negative_prompt_attention_mask, prompt_attention_mask], dim=0
)
if do_spatio_temporal_guidance:
prompt_embeds_batch = torch.cat([prompt_embeds_batch, prompt_embeds], dim=0)
prompt_attention_mask_batch = torch.cat(
[
prompt_attention_mask_batch,
prompt_attention_mask,
],
dim=0,
)
# 4. Prepare the initial latents using the provided media and conditioning items
# Prepare the initial latents tensor, shape = (b, c, f, h, w)
latents = self.prepare_latents(
latents=latents,
media_items=media_items,
timestep=timesteps[0],
latent_shape=latent_shape,
dtype=prompt_embeds_batch.dtype,
device=device,
generator=generator,
vae_per_channel_normalize=vae_per_channel_normalize,
)
# Update the latents with the conditioning items and patchify them into (b, n, c)
latents, pixel_coords, conditioning_mask, num_cond_latents = (
self.prepare_conditioning(
conditioning_items=conditioning_items,
init_latents=latents,
num_frames=num_frames,
height=height,
width=width,
vae_per_channel_normalize=vae_per_channel_normalize,
generator=generator,
)
)
init_latents = latents.clone() # Used for image_cond_noise_update
pixel_coords = torch.cat([pixel_coords] * num_conds)
orig_conditioning_mask = conditioning_mask
if conditioning_mask is not None and is_video:
assert num_images_per_prompt == 1
conditioning_mask = torch.cat([conditioning_mask] * num_conds)
fractional_coords = pixel_coords.to(torch.float32)
fractional_coords[:, 0] = fractional_coords[:, 0] * (1.0 / frame_rate)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = max(
len(timesteps) - num_inference_steps * self.scheduler.order, 0
)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if conditioning_mask is not None and image_cond_noise_scale > 0.0:
latents = self.add_noise_to_image_conditioning_latents(
t,
init_latents,
latents,
image_cond_noise_scale,
orig_conditioning_mask,
generator,
)
latent_model_input = (
torch.cat([latents] * num_conds) if num_conds > 1 else latents
)
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t
)
current_timestep = t
if not torch.is_tensor(current_timestep):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = latent_model_input.device.type == "mps"
if isinstance(current_timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
current_timestep = torch.tensor(
[current_timestep],
dtype=dtype,
device=latent_model_input.device,
)
elif len(current_timestep.shape) == 0:
current_timestep = current_timestep[None].to(
latent_model_input.device
)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
current_timestep = current_timestep.expand(
latent_model_input.shape[0]
).unsqueeze(-1)
if conditioning_mask is not None:
# Conditioning latents have an initial timestep and noising level of (1.0 - conditioning_mask)
# and will start to be denoised when the current timestep is lower than their conditioning timestep.
current_timestep = torch.min(
current_timestep, 1.0 - conditioning_mask
)
# Choose the appropriate context manager based on `mixed_precision`
if mixed_precision:
context_manager = torch.autocast(device.type, dtype=torch.bfloat16)
else:
context_manager = nullcontext() # Dummy context manager
# predict noise model_output
with context_manager:
noise_pred = self.transformer(
latent_model_input.to(self.transformer.dtype),
indices_grid=fractional_coords,
encoder_hidden_states=prompt_embeds_batch.to(
self.transformer.dtype
),
encoder_attention_mask=prompt_attention_mask_batch,
timestep=current_timestep,
skip_layer_mask=(
skip_layer_masks[i]
if skip_layer_masks is not None
else None
),
skip_layer_strategy=skip_layer_strategy,
return_dict=False,
)[0]
# perform guidance
if do_spatio_temporal_guidance:
noise_pred_text, noise_pred_text_perturb = noise_pred.chunk(
num_conds
)[-2:]
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(num_conds)[:2]
if cfg_star_rescale:
# Rescales the unconditional noise prediction using the projection of the conditional prediction onto it:
# α = (⟨ε_text, ε_uncond⟩ / ||ε_uncond||²), then ε_uncond ← α * ε_uncond
# where ε_text is the conditional noise prediction and ε_uncond is the unconditional one.
positive_flat = noise_pred_text.view(batch_size, -1)
negative_flat = noise_pred_uncond.view(batch_size, -1)
dot_product = torch.sum(
positive_flat * negative_flat, dim=1, keepdim=True
)
squared_norm = (
torch.sum(negative_flat**2, dim=1, keepdim=True) + 1e-8
)
alpha = dot_product / squared_norm
noise_pred_uncond = alpha * noise_pred_uncond
noise_pred = noise_pred_uncond + guidance_scale[i] * (
noise_pred_text - noise_pred_uncond
)
elif do_spatio_temporal_guidance:
noise_pred = noise_pred_text
if do_spatio_temporal_guidance:
noise_pred = noise_pred + stg_scale[i] * (
noise_pred_text - noise_pred_text_perturb
)
if do_rescaling and stg_scale[i] > 0.0:
noise_pred_text_std = noise_pred_text.view(batch_size, -1).std(
dim=1, keepdim=True
)
noise_pred_std = noise_pred.view(batch_size, -1).std(
dim=1, keepdim=True
)
factor = noise_pred_text_std / noise_pred_std
factor = rescaling_scale[i] * factor + (1 - rescaling_scale[i])
noise_pred = noise_pred * factor.view(batch_size, 1, 1)
current_timestep = current_timestep[:1]
# learned sigma
if (
self.transformer.config.out_channels // 2
== self.transformer.config.in_channels
):
noise_pred = noise_pred.chunk(2, dim=1)[0]
# compute previous image: x_t -> x_t-1
latents = self.denoising_step(
latents,
noise_pred,
current_timestep,
orig_conditioning_mask,
t,
extra_step_kwargs,
stochastic_sampling=stochastic_sampling,
)
# call the callback, if provided
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
):
progress_bar.update()
if callback_on_step_end is not None:
callback_on_step_end(self, i, t, {})
if offload_to_cpu:
self.transformer = self.transformer.cpu()
if self._execution_device == "cuda":
torch.cuda.empty_cache()
# Remove the added conditioning latents
latents = latents[:, num_cond_latents:]
latents = self.patchifier.unpatchify(
latents=latents,
output_height=latent_height,
output_width=latent_width,
out_channels=self.transformer.in_channels
// math.prod(self.patchifier.patch_size),
)
if output_type != "latent":
if self.vae.decoder.timestep_conditioning:
noise = torch.randn_like(latents)
if not isinstance(decode_timestep, list):
decode_timestep = [decode_timestep] * latents.shape[0]
if decode_noise_scale is None:
decode_noise_scale = decode_timestep
elif not isinstance(decode_noise_scale, list):
decode_noise_scale = [decode_noise_scale] * latents.shape[0]
decode_timestep = torch.tensor(decode_timestep).to(latents.device)
decode_noise_scale = torch.tensor(decode_noise_scale).to(
latents.device
)[:, None, None, None, None]
latents = (
latents * (1 - decode_noise_scale) + noise * decode_noise_scale
)
else:
decode_timestep = None
image = vae_decode(
latents,
self.vae,
is_video,
vae_per_channel_normalize=kwargs["vae_per_channel_normalize"],
timestep=decode_timestep,
)
image = self.image_processor.postprocess(image, output_type=output_type)
else:
image = latents
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
def denoising_step(
self,
latents: torch.Tensor,
noise_pred: torch.Tensor,
current_timestep: torch.Tensor,
conditioning_mask: torch.Tensor,
t: float,
extra_step_kwargs,
t_eps=1e-6,
stochastic_sampling=False,
):
"""
Perform the denoising step for the required tokens, based on the current timestep and
conditioning mask:
Conditioning latents have an initial timestep and noising level of (1.0 - conditioning_mask)
and will start to be denoised when the current timestep is equal or lower than their
conditioning timestep.
(hard-conditioning latents with conditioning_mask = 1.0 are never denoised)
"""
# Denoise the latents using the scheduler
denoised_latents = self.scheduler.step(
noise_pred,
t if current_timestep is None else current_timestep,
latents,
**extra_step_kwargs,
return_dict=False,
stochastic_sampling=stochastic_sampling,
)[0]
if conditioning_mask is None:
return denoised_latents
tokens_to_denoise_mask = (t - t_eps < (1.0 - conditioning_mask)).unsqueeze(-1)
return torch.where(tokens_to_denoise_mask, denoised_latents, latents)
def prepare_conditioning(
self,
conditioning_items: Optional[List[ConditioningItem]],
init_latents: torch.Tensor,
num_frames: int,
height: int,
width: int,
vae_per_channel_normalize: bool = False,
generator=None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
"""
Prepare conditioning tokens based on the provided conditioning items.
This method encodes provided conditioning items (video frames or single frames) into latents
and integrates them with the initial latent tensor. It also calculates corresponding pixel
coordinates, a mask indicating the influence of conditioning latents, and the total number of
conditioning latents.
Args:
conditioning_items (Optional[List[ConditioningItem]]): A list of ConditioningItem objects.
init_latents (torch.Tensor): The initial latent tensor of shape (b, c, f_l, h_l, w_l), where
`f_l` is the number of latent frames, and `h_l` and `w_l` are latent spatial dimensions.
num_frames, height, width: The dimensions of the generated video.
vae_per_channel_normalize (bool, optional): Whether to normalize channels during VAE encoding.
Defaults to `False`.
generator: The random generator
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
- `init_latents` (torch.Tensor): The updated latent tensor including conditioning latents,
patchified into (b, n, c) shape.
- `init_pixel_coords` (torch.Tensor): The pixel coordinates corresponding to the updated
latent tensor.
- `conditioning_mask` (torch.Tensor): A mask indicating the conditioning-strength of each
latent token.
- `num_cond_latents` (int): The total number of latent tokens added from conditioning items.
Raises:
AssertionError: If input shapes, dimensions, or conditions for applying conditioning are invalid.
"""
assert isinstance(self.vae, CausalVideoAutoencoder)
if conditioning_items:
batch_size, _, num_latent_frames = init_latents.shape[:3]
init_conditioning_mask = torch.zeros(
init_latents[:, 0, :, :, :].shape,
dtype=torch.float32,
device=init_latents.device,
)
extra_conditioning_latents = []
extra_conditioning_pixel_coords = []
extra_conditioning_mask = []
extra_conditioning_num_latents = 0 # Number of extra conditioning latents added (should be removed before decoding)
# Process each conditioning item
for conditioning_item in conditioning_items:
conditioning_item = self._resize_conditioning_item(
conditioning_item, height, width
)
media_item = conditioning_item.media_item
media_frame_number = conditioning_item.media_frame_number
strength = conditioning_item.conditioning_strength
assert media_item.ndim == 5 # (b, c, f, h, w)
b, c, n_frames, h, w = media_item.shape
assert (
height == h and width == w
) or media_frame_number == 0, f"Dimensions do not match: {height}x{width} != {h}x{w} - allowed only when media_frame_number == 0"
assert n_frames % 8 == 1
assert (
media_frame_number >= 0
and media_frame_number + n_frames <= num_frames
)
# Encode the provided conditioning media item
media_item_latents = vae_encode(
media_item.to(dtype=self.vae.dtype, device=self.vae.device),
self.vae,
vae_per_channel_normalize=vae_per_channel_normalize,
).to(dtype=init_latents.dtype)
# Handle the different conditioning cases
if media_frame_number == 0:
# Get the target spatial position of the latent conditioning item
media_item_latents, l_x, l_y = self._get_latent_spatial_position(
media_item_latents,
conditioning_item,
height,
width,
strip_latent_border=True,
)
b, c_l, f_l, h_l, w_l = media_item_latents.shape
# First frame or sequence - just update the initial noise latents and the mask
init_latents[:, :, :f_l, l_y : l_y + h_l, l_x : l_x + w_l] = (
torch.lerp(
init_latents[:, :, :f_l, l_y : l_y + h_l, l_x : l_x + w_l],
media_item_latents,
strength,
)
)
init_conditioning_mask[
:, :f_l, l_y : l_y + h_l, l_x : l_x + w_l
] = strength
else:
# Non-first frame or sequence
if n_frames > 1:
# Handle non-first sequence.
# Encoded latents are either fully consumed, or the prefix is handled separately below.
(
init_latents,
init_conditioning_mask,
media_item_latents,
) = self._handle_non_first_conditioning_sequence(
init_latents,
init_conditioning_mask,
media_item_latents,
media_frame_number,
strength,
)
# Single frame or sequence-prefix latents
if media_item_latents is not None:
noise = randn_tensor(
media_item_latents.shape,
generator=generator,
device=media_item_latents.device,
dtype=media_item_latents.dtype,
)
media_item_latents = torch.lerp(
noise, media_item_latents, strength
)
# Patchify the extra conditioning latents and calculate their pixel coordinates
media_item_latents, latent_coords = self.patchifier.patchify(
latents=media_item_latents
)
pixel_coords = latent_to_pixel_coords(
latent_coords,
self.vae,
causal_fix=self.transformer.config.causal_temporal_positioning,
)
# Update the frame numbers to match the target frame number
pixel_coords[:, 0] += media_frame_number
extra_conditioning_num_latents += media_item_latents.shape[1]
conditioning_mask = torch.full(
media_item_latents.shape[:2],
strength,
dtype=torch.float32,
device=init_latents.device,
)
extra_conditioning_latents.append(media_item_latents)
extra_conditioning_pixel_coords.append(pixel_coords)
extra_conditioning_mask.append(conditioning_mask)
# Patchify the updated latents and calculate their pixel coordinates
init_latents, init_latent_coords = self.patchifier.patchify(
latents=init_latents
)
init_pixel_coords = latent_to_pixel_coords(
init_latent_coords,
self.vae,
causal_fix=self.transformer.config.causal_temporal_positioning,
)
if not conditioning_items:
return init_latents, init_pixel_coords, None, 0
init_conditioning_mask, _ = self.patchifier.patchify(
latents=init_conditioning_mask.unsqueeze(1)
)
init_conditioning_mask = init_conditioning_mask.squeeze(-1)
if extra_conditioning_latents:
# Stack the extra conditioning latents, pixel coordinates and mask
init_latents = torch.cat([*extra_conditioning_latents, init_latents], dim=1)
init_pixel_coords = torch.cat(
[*extra_conditioning_pixel_coords, init_pixel_coords], dim=2
)
init_conditioning_mask = torch.cat(
[*extra_conditioning_mask, init_conditioning_mask], dim=1
)
if self.transformer.use_tpu_flash_attention:
# When flash attention is used, keep the original number of tokens by removing
# tokens from the end.
init_latents = init_latents[:, :-extra_conditioning_num_latents]
init_pixel_coords = init_pixel_coords[
:, :, :-extra_conditioning_num_latents
]
init_conditioning_mask = init_conditioning_mask[
:, :-extra_conditioning_num_latents
]
return (
init_latents,
init_pixel_coords,
init_conditioning_mask,
extra_conditioning_num_latents,
)
@staticmethod
def _resize_conditioning_item(
conditioning_item: ConditioningItem,
height: int,
width: int,
):
if conditioning_item.media_x or conditioning_item.media_y:
raise ValueError(
"Provide media_item in the target size for spatial conditioning."
)
new_conditioning_item = copy.copy(conditioning_item)
new_conditioning_item.media_item = LTXVideoPipeline.resize_tensor(
conditioning_item.media_item, height, width
)
return new_conditioning_item
def _get_latent_spatial_position(
self,
latents: torch.Tensor,
conditioning_item: ConditioningItem,
height: int,
width: int,
strip_latent_border,
):
"""
Get the spatial position of the conditioning item in the latent space.
If requested, strip the conditioning latent borders that do not align with target borders.
(border latents look different then other latents and might confuse the model)
"""
scale = self.vae_scale_factor
h, w = conditioning_item.media_item.shape[-2:]
assert (
h <= height and w <= width
), f"Conditioning item size {h}x{w} is larger than target size {height}x{width}"
assert h % scale == 0 and w % scale == 0
# Compute the start and end spatial positions of the media item
x_start, y_start = conditioning_item.media_x, conditioning_item.media_y
x_start = (width - w) // 2 if x_start is None else x_start
y_start = (height - h) // 2 if y_start is None else y_start
x_end, y_end = x_start + w, y_start + h
assert (
x_end <= width and y_end <= height
), f"Conditioning item {x_start}:{x_end}x{y_start}:{y_end} is out of bounds for target size {width}x{height}"
if strip_latent_border:
# Strip one latent from left/right and/or top/bottom, update x, y accordingly
if x_start > 0:
x_start += scale
latents = latents[:, :, :, :, 1:]
if y_start > 0:
y_start += scale
latents = latents[:, :, :, 1:, :]
if x_end < width:
latents = latents[:, :, :, :, :-1]
if y_end < height:
latents = latents[:, :, :, :-1, :]
return latents, x_start // scale, y_start // scale
@staticmethod
def _handle_non_first_conditioning_sequence(
init_latents: torch.Tensor,
init_conditioning_mask: torch.Tensor,
latents: torch.Tensor,
media_frame_number: int,
strength: float,
num_prefix_latent_frames: int = 2,
prefix_latents_mode: str = "concat",
prefix_soft_conditioning_strength: float = 0.15,
):
"""
Special handling for a conditioning sequence that does not start on the first frame.
The special handling is required to allow a short encoded video to be used as middle
(or last) sequence in a longer video.
Args:
init_latents (torch.Tensor): The initial noise latents to be updated.
init_conditioning_mask (torch.Tensor): The initial conditioning mask to be updated.
latents (torch.Tensor): The encoded conditioning item.
media_frame_number (int): The target frame number of the first frame in the conditioning sequence.
strength (float): The conditioning strength for the conditioning latents.
num_prefix_latent_frames (int, optional): The length of the sequence prefix, to be handled
separately. Defaults to 2.
prefix_latents_mode (str, optional): Special treatment for prefix (boundary) latents.
- "drop": Drop the prefix latents.
- "soft": Use the prefix latents, but with soft-conditioning
- "concat": Add the prefix latents as extra tokens (like single frames)
prefix_soft_conditioning_strength (float, optional): The strength of the soft-conditioning for
the prefix latents, relevant if `prefix_latents_mode` is "soft". Defaults to 0.1.
"""
f_l = latents.shape[2]
f_l_p = num_prefix_latent_frames
assert f_l >= f_l_p
assert media_frame_number % 8 == 0
if f_l > f_l_p:
# Insert the conditioning latents **excluding the prefix** into the sequence
f_l_start = media_frame_number // 8 + f_l_p
f_l_end = f_l_start + f_l - f_l_p
init_latents[:, :, f_l_start:f_l_end] = torch.lerp(
init_latents[:, :, f_l_start:f_l_end],
latents[:, :, f_l_p:],
strength,
)
# Mark these latent frames as conditioning latents
init_conditioning_mask[:, f_l_start:f_l_end] = strength
# Handle the prefix-latents
if prefix_latents_mode == "soft":
if f_l_p > 1:
# Drop the first (single-frame) latent and soft-condition the remaining prefix
f_l_start = media_frame_number // 8 + 1
f_l_end = f_l_start + f_l_p - 1
strength = min(prefix_soft_conditioning_strength, strength)
init_latents[:, :, f_l_start:f_l_end] = torch.lerp(
init_latents[:, :, f_l_start:f_l_end],
latents[:, :, 1:f_l_p],
strength,
)
# Mark these latent frames as conditioning latents
init_conditioning_mask[:, f_l_start:f_l_end] = strength
latents = None # No more latents to handle
elif prefix_latents_mode == "drop":
# Drop the prefix latents
latents = None
elif prefix_latents_mode == "concat":
# Pass-on the prefix latents to be handled as extra conditioning frames
latents = latents[:, :, :f_l_p]
else:
raise ValueError(f"Invalid prefix_latents_mode: {prefix_latents_mode}")
return (
init_latents,
init_conditioning_mask,
latents,
)
def trim_conditioning_sequence(
self, start_frame: int, sequence_num_frames: int, target_num_frames: int
):
"""
Trim a conditioning sequence to the allowed number of frames.
Args:
start_frame (int): The target frame number of the first frame in the sequence.
sequence_num_frames (int): The number of frames in the sequence.
target_num_frames (int): The target number of frames in the generated video.
Returns:
int: updated sequence length
"""
scale_factor = self.video_scale_factor
num_frames = min(sequence_num_frames, target_num_frames - start_frame)
# Trim down to a multiple of temporal_scale_factor frames plus 1
num_frames = (num_frames - 1) // scale_factor * scale_factor + 1
return num_frames
def adain_filter_latent(
latents: torch.Tensor, reference_latents: torch.Tensor, factor=1.0
):
"""
Applies Adaptive Instance Normalization (AdaIN) to a latent tensor based on
statistics from a reference latent tensor.
Args:
latent (torch.Tensor): Input latents to normalize
reference_latent (torch.Tensor): The reference latents providing style statistics.
factor (float): Blending factor between original and transformed latent.
Range: -10.0 to 10.0, Default: 1.0
Returns:
torch.Tensor: The transformed latent tensor
"""
result = latents.clone()
for i in range(latents.size(0)):
for c in range(latents.size(1)):
r_sd, r_mean = torch.std_mean(
reference_latents[i, c], dim=None
) # index by original dim order
i_sd, i_mean = torch.std_mean(result[i, c], dim=None)
result[i, c] = ((result[i, c] - i_mean) / i_sd) * r_sd + r_mean
result = torch.lerp(latents, result, factor)
return result
class LTXMultiScalePipeline:
def _upsample_latents(
self, latest_upsampler: LatentUpsampler, latents: torch.Tensor
):
assert latents.device == latest_upsampler.device
latents = un_normalize_latents(
latents, self.vae, vae_per_channel_normalize=True
)
upsampled_latents = latest_upsampler(latents)
upsampled_latents = normalize_latents(
upsampled_latents, self.vae, vae_per_channel_normalize=True
)
return upsampled_latents
def __init__(
self, video_pipeline: LTXVideoPipeline, latent_upsampler: LatentUpsampler
):
self.video_pipeline = video_pipeline
self.vae = video_pipeline.vae
self.latent_upsampler = latent_upsampler
def __call__(
self,
downscale_factor: float,
first_pass: dict,
second_pass: dict,
*args: Any,
**kwargs: Any,
) -> Any:
original_kwargs = kwargs.copy()
original_output_type = kwargs["output_type"]
original_width = kwargs["width"]
original_height = kwargs["height"]
x_width = int(kwargs["width"] * downscale_factor)
downscaled_width = x_width - (x_width % self.video_pipeline.vae_scale_factor)
x_height = int(kwargs["height"] * downscale_factor)
downscaled_height = x_height - (x_height % self.video_pipeline.vae_scale_factor)
kwargs["output_type"] = "latent"
kwargs["width"] = downscaled_width
kwargs["height"] = downscaled_height
kwargs.update(**first_pass)
result = self.video_pipeline(*args, **kwargs)
latents = result.images
upsampled_latents = self._upsample_latents(self.latent_upsampler, latents)
upsampled_latents = adain_filter_latent(
latents=upsampled_latents, reference_latents=latents
)
kwargs = original_kwargs
kwargs["latents"] = upsampled_latents
kwargs["output_type"] = original_output_type
kwargs["width"] = downscaled_width * 2
kwargs["height"] = downscaled_height * 2
kwargs.update(**second_pass)
result = self.video_pipeline(*args, **kwargs)
if original_output_type != "latent":
num_frames = result.images.shape[2]
videos = rearrange(result.images, "b c f h w -> (b f) c h w")
videos = F.interpolate(
videos,
size=(original_height, original_width),
mode="bilinear",
align_corners=False,
)
videos = rearrange(videos, "(b f) c h w -> b c f h w", f=num_frames)
result.images = videos
return result